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The Finite Element Method was used to solve the nonlinear electron

plasma equations for the System-Generated Electromagnetic Pulse boundary

layer in one spatial dimension. These equations were solved in dis-

tance-velocity phase space using a rectangular finite element mesh.

Linear approximations were used for both the trial and weight functions

for each element. The advection terms in the Vlasov plasma equation

were treated with the Heinrich upwinding technique.
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Lax-Wendroff procedure. The system of algebraic equations was solved

with a fully-packed Gauss-Seidel iteration scheme.
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best compromise between dispersion of the pulse and computer storage

requirements. The savings in computer memory results in increased

execution speed for the algorithm. Also, it is shown that the numerical

scheme does not permit spurious pulse reflections from the edges of the

mesh.

Results for several test cases are presented. Comparisons are

given which show favorable agreement for the finite element technique

with other solution methods.

Empirical relationships for the mesh parameters are given which

must be followed in order to produce valid results with the numerical

scheme developed.
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THE FINITE ELEMENT METHOD APPLIED

TO TH1E SYSTE-GENERATED ELECTROMAGNETIC PULSE

BOUNDARY LAYER

I. Introduction

DEFINITION OF SCEMP. System-Generated Electromagnetic Pulse

(SCEMP) is an effect of a nuclear weapon detonation. It will occur

whenever the ionizing radiations (X-rays, gamma rays, and neutrons) from

a nuclear event are incident upon an object in a low pressure (high

altitude) environment. The radiation interacts with the object via the

Compton and photoelectric processes. These mechanisms produce free

electrons inside the object and in the region surrounding it. The elec-

tromagnetic field created by the electrons in motion about the object is

called SGEMP.

A nuclear burst in space is of particular interest to the Air

Force. Line-of-sight radiation from such a burst will be received by a

satellite unattenuated by atmospheric interactions. The line-of-sight

radiation arrives at the satellite affected only by the spherical di-

vergence factor of 1/41tr 2 , where r = distance from the burst point to

the satellite.

The depth of interaction into the material of the satellite depends

on the energy and type of radiation. High energy X-rays, gamma rays and

neutrons will penetrate a few, to tens of centimeters, into the material

before interactions take place. These interactions lead to direct

injection of current into the satellite's circuitry.

However, the penetrating radiations are only a minor fraction of a



nuclear weapon's energy output. Approximately 80% of the energy

released from a nuclear burst is in the form of X-rays (Pef 1, Chapter

7). A fraction of these X-rays are in the energy range of I keV. These

relatively low-energy photons will primarily interact with the surface

atoms of the satellite (usually a metal such as Aluminum). About half

of all the electrons generated by the photoelectric effect (the major

interaction mechanism at these photon energies) are back-scattered into

space off of the satellite (Ref 2, Chapters 23-25). Consequently, elec-

tromagnetic fields will surround the satellite, generating surface

currents in the process. These surface currents may also find their way

into the circuitry of the satellite, creating a potential hazard to

electronic components. The creation of surface currents via this pro-

cess is known as the external (or outside) System-Generated Electro-

magnetic Pulse problem, or simply SGEMP, and is the phenomenon analyzed

here.

IMPORTANCE OF UNDERSTANDING SGEMP. The ability of a satellite to

withstand a nuclear environment is critical to our national defense.

Therefore, a quantitative knowledge of the nuclear threat to these

systems is necessary. The SGEMP effect is an important consideration

for space systems. Realistic testing is one of the best methods to

measure the impact of SGEMP on space vehicles. Unfortunately, the

creation of the right kind of radiation with the proper energy, flux,

and time history is difficult to produce in the laboratory. Underground

nuclear testing can be done, but the cost, and large size of some

systems makes such experiments difficult to accomplish, at best.

As a result, the Air Force has instituted a technical program for

the theoretical understanding of SGEMP. This program encompasses both
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analytical and computational methods. Researchers have studied several

important properties of the SGEMP process since the institution of this

program. One of these is the boundary layer.

THE BOUNDARY LAYER. The electron boundary layer is created near

the surface of the satellite. This effect is due to the large, normal

electric field created by the removal of charge from the material of the

satellite. Since this electric field is directed away from the surface,

electrons experience a force directed back towards the satellite. In

fact, the electric field can get so strong that subsequently ejected

electrons of lower energy will not be able to penetrate this small

region near the satellite. This region will contain a high density of

electrons, some which have been slowed down considerably, others which

have actually turned around. It is even possible for electrons to exist

in this area under quasi-static equilibrium conditions.

This region of dense electrons which retards the progress of other

emitted electrons is known as the boundary layer. The dimensions of

this layer cannot be defined precisely. However, a generally accepted

practice is to consider the boundary layer to be a few Debye lengths

thick. The Debye length is the characteristic distance of a plasma

defined by the relaxation length of exponential screening. That is, it

is the distance that is required for the electric potential to drop by a

factor of l/e. The significance of the Debye length lies in the fact

that the electrostatic potential felt by an electron at a distance much

greater than a few Debye lengths from a charge distribution will be very

small. Because the Debye length is the characteristic distance of a

plasma, it is natural to use it as the defining parameter for the

boundary layer.
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The boundary layer sets up a potential screen between the electrons

leaving the surface and those which are oeyond the boundary layer. This

screen reduces the energies of electrons. It also determines electron

flow on the surface of the satellite by affecting the electromagnetic

fields at the surface. Some of the surface current may get into the

satellite's interior. This is the important physical quantity of design

interest. Therefore, a detailed knowledge of the surface currents,

hence boundary layer, is an important step to the understanding of the

SGEMP.

PRIOR RELATED WORK. Serious technical effort to understand the

fundamental physical processes of SGEMP, including the boundary layer

and surface currents, began in the mid 1960's. The Air Force Weapons

Laboratory and the Defense Nuclear Agency sponsored large SGEMP programs

to develop theoretical knowledge and computational techniques. Conrad

Longmire, Neal Carron and others analyzed the composition of the

electron boundary layer via theoretical and semi-analytical means (Ref

3,4,5, and 6). Others concentrated on the development of one-, two-,

and three-dimensional computer codes (Ref 7,8,9, and 10). An excellent

article by Higgins et al (Ref 11) reviews the progress made in SGEMP

analysis up to 1978.

As Higgins points out, the majority of numerical approaches used to

date are particle simulation codes. This technique, also called

"particle pushing", relies upon a statistical model of macro-charges.

That is, one makes the assumption that a given amount of charge can be

nodelled as one large macro-particle. This allows the force on each

particle to determine its movement about the satellite. Each individual

particle represents millions of electrons. The greater the number of

4



macro-particles used, the better the accuracy.

Only a few researchers have approached transient SGEMP using a

continuum model for the electron distribution (Ref 12 and 13). This

approach is very common in plasma studies, where the electrons exhibit

periodic motion (Ref 14 and 15). In this method, a distribution

function is defined which depends upon the position, x, and velocity, v,

of the electrons. This distribution function then describes the density

of the electrons in the (x,v) phase space.

The major difficulties associated with the particle-pushing codes

are noise fluctuations produced by the statistical nature of the algo-

rithms, and the computer memory requirements. The distribution function

approach also has storage problems. Additionally, the dominant

advection terms in the equations are difficult to treat numerically.

However, as Holland points out (Ref 12), for cases that require tracking

of many particles which do not leave the numerical mesh, the distribu-

tion function approach will become more efficient than particle pushing

after relatively few time cycles. Holland roughly estimates that, for a

particular two-dimensional problem he considered, 80,000 storage

locations would be required by a particle-pushing method to achieve

results of comparable accuracy to those obtained by a distribution

unction approach with 35,000 locations. Thus, the distribution

function method may be more efficient for long running problems with

large boundary layer effects. But the advective nature of the equation

remains a problem.

THE FINITE ELEMENT METHOD (FEM). The FEM is a numerical technique

which has been used extensively by engineers to perform complex

structural analyses in the aircraft industry. It was first introduced

5



for this purpose twenty years ago (Kef 16). Since that time, research-

ers in other disciplines have recognized that for some problems the FEM

has certain desirable qualities. As a result, the technical literature

has become filled with finite element applications for such diverse

fields as nuclear reactor technology, electromagnetic field scattering

and oceanic water wave behavior. This widespread interest in the FEM

prompted mathematicians to study the technique in great detail. Conse-

quently, there are now many texts which describe the FEM from both the

engineering and mathematical points-of-view. References 16,17, and 18

are just a few examples of these texts.

The success of the method was clouded by one fact: although finite

elements worked well for elliptic and parabolic equations, there was

some doubt as to the usefulness of the technique on hyperbolic equations

(Ref 17, Chapter 7) and advective-dominated transport equations. The

equations of SGEMP formulated with a continuous distribution function

for the electrons' behavior are dominated by advection terms. Reently,

several authors have shown that the FEM can be effective for hyperbolic

equations and for advective-dominated propagation such as found in SGEMP

(Ref 19, Chapters 2 and 19).

There has also been a continuing debate over the accuracy of the

FEI! versus a finite difference solution to the same equations. However,

Gresho et al (Ref 19, Chapter 19) have reported improvements over finite

difference results for pure advection in one dimension when using finite

elements. Also, Demerdash and Nehl (Ref 20) claim to have achieved more

accurate results for static and sinusoidally varying nonlinear electro-

magnetic field problems using less computer time and memory with the

FE!I. These last achievements are important for SGEMP research because

6



it, too, is a nonlinear electromagnetic problem.

PURPOSE OF DISSERTATION. The major goal for this dissertation is

to investigate the FEM as a new approach for the one-dimensional SGEMP

problem. The weight and trial functions for the FEM will be developed

with attention given to the strongly-advective equations of SGEMP. The

elements which reduce implementation difficulties will be used. Param-

eters introduced when using advective methods will be analyzed to de-

termine which values to use. The nonlinear SGEMP equations will be

integrated using methods proven to work for other finite element equa-

tions.

The impact of the FEM on the solutions to specific SGEMP prob-

lems will be examined. The sensitivity of the finite element solutions

to the space, velocity and time intervals shall be analyzed. Addition-

ally, results using this different technique will be compared with the

more traditional methods of analysis; namely, theoretical solutions

and finite difference methods. Thus, another set of results will be

produced to describe the effects of the nonlinear boundary layer.

OVERVIEW. The finite element solution to the one-dimensional SGEMP

equations was done on a Control Data CYBER 176 series computer using a

FORTRAN IV program called FEMNEP (Finite Element Method for a

Nonlinear Electromagnetic Problem). This program was written by

the author as a research tool, not specifically designed for

large-scale, production running.

Chapter II of this dissertation presents the equations and physics

of SGEMP. Prior solution techniques, as well as the inherent difficul-

ties built into the equations are discussed. Chapter III contains the

7



basic numerical prescriptions used in this dissertation to solve the

equations of Chapter II. The FEM itself, the time integration, and the

special numerical treatments are included in this chapter. Chapter IV

presents the results of the FEM when applied to the one-dimensional

SCE boundary layer. Finally, Chapter V summarizes the results and

lists the conclusions of this dissertation.

Many of the derivations, and other discussions not directly related

to the development of the subject matter being presented, are relegated

to the appendices.
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II. System Generated Electromagnetic Pulse

THE EQUATIONS. For the purpose of this study, only SGE11P produced

by X-rays will be considered. Thus, consider an object illuminated by a

pulse of X-rays of short duration ( -1 psec) in a vacuum. Through

nuclear interaction processes with the object, primarily the photoelec-

tric effect for Aluminum (Ref 2 Chapter 25), electrons will be ejected

off its surface. The behavior of these electrons in their own self

fields is determined by the Vlasov Equation, a form of the Boltzmann

Equation (Ref 12 and Ref 22, p. 260):

--(~~)++ +  + + +  + +

7• N )+ Vf(x~v't) + a. vf(x,v,t) =S(+,+~) 1

+

where x - position of electron

v - velocity of electron

t - time

f(,v,t) = distribution function for electrons+ +

- number of electrons per dv per dx at
time, t

+a ,acceleration of electrons

S(xv,t) = source of electrons
= rate of electrons produced per d

per d at time, t.

Since the electrons of interest will be traveling at less than 1%

m , 9



of the speed of light, the acceleration, a, is given by the Lorentz

Force,

a(x, = - E( x) + B (x,t)] (2)
rn

for rationalized MS units. In this equation,

_1 9
e = charge of electron = 1.6 x 10 Coulomb

-31
mn = mass of electron = 9.11 x 10 Kgm

X,)= electric field in Volts/n

+

v =velocity of electron in i.sec

i~ )= magnetic induction field in iWeber/m2

In order to complete the solution of Eqn (1), Mtaxwell's Equations

in free space are needed:

7(t)=p(X,t) (3a); V. (,t,t) =0 (3b)

+

V (,,t) = Xt + ue E-(~t (3d)

p(x+,t) =charge density in Coul/m 3

I(,t,t) =current density in Amp/rn2

10



= permeability of free space
o 41 x 10- 7  Henry/m

= permittivity of free space

= 8.85 x 10-12 Farad/m

The solution to Eqns (3a) and (3b) is facilitated by the fact that if

and fields are found which satisfy these equations at any time, then

the advancement of these solutions in time via Eqns (3c) and (3d) will

produce fields which always satisfy them (Ref 23 Sec. 1.2).

One other auxiliary equation is required to complete the physical

description of the SGEMP process; that is, the connection between the

distribution function, f(Xv,t), and the driving term of Maxwell's

Equations, 1(X6,t), the current density. This is really a matter of def-

inition, and is:

I(=,t) -e f f(k v, t) dv (4)

Its more recognizable form is 1=-ne$, where n = number of electrons per

cubic meter. An actual integration can be performed by using upper and

lower limits which are chosen so that f(x,v,t) is negligible outside

these limits. In principle, then, Eqns (1), (2), (3c), (3d), and (4)

provide the physics of SGEMP. All that is needed to complete the

solution are initial conditions, boundary conditions, the specification

of the source characteristics and a technique to solve the equations.

One numerical method of solution would proceed the following way:

assume all electromagnetic fields are zero to start with; then, with a

knowledge of S(x,v,O+At), the distribution function, f( ,v,O) is

11



advanced to f(x,v,O+At) by Eqn (1). From this information, the source
++

term for Maxwell's Equations, J(x,O+At), is specified through Eqn (4).

Then, Eqns (3c) and (3d) are solved for B(x,O4+At) and E(x,O+At) in some

leap-frog fashion. Once E and B are determined, the acceleration, a, is

known at advanced time, t=At, from Eqn (2). The procedure now can be

repeated for t=t+2t, and so on.

Of course, there are many subtleties in this prescription which

make an actual numerical solution extremely difficult. The numerical

solution to Maxwell's Equations, alone, is a challenging task (Ref 24).

ONE-DIMENSIONAL APPROXIMATION. In order to study the properties of

the highly space-charge-limited region, or boundary layer, of the SGEMP

problem, it is usually only necessary to consider the motion of the

electrons in one spatial dimension. That is, a one-dimensional approx-

imation is valid for an infinite flat emitting surface. And, the

surface may be considered flat if the boundary layer thickness is small

compared to the linear dimensions and radii of curvature for the region

of interest. Now, a typical boundary layer for an aluminum surface

and typical incident I keV blackbody X-ray spectrum with a 0.001

cal/(cm 2-nanosec) flux has a boundary layer thickness of about I mil-

limeter. Therefore, it is reasonable to make a one-dimensional

model in order to study thc boundary layer since.satellites have

many exterior linear dimensions which are much larger than millimeter

size.

In one dimension, several simplifications to Eqns (1) thru (4) can

be made since all dependent variables are functions of one spatial

direction and one velocity direction only. Let these variables be z and

vz=v. It is easy to show from both physical and mathematical principles

12



that no magnetic fields can exist in these equations when the problem is

limited to one spatial dimension (see Appendix A). Letting E =E, Eqns
z

(1) and (2) can be combined to give:

a f af e af

--(z,v,t) + v. (z,v,t) - .!:E(zt) v(Z'Vt) = S(z,v,t) (5)

Likewise, if J =J, Eqns (3d) and (4) yield:
z

(z,t) = vf(z,v,t) dv (6)

al v

Equation (5) is the one-dimensional Vlasov Equation and Eqn (6)

says that the Maxwell displacement current is proportional to the

ordinary current when no magnetic field exists (Ampere's Law minus a

magnetic field but with displacement current). The Vlasov Equation can

be thought of as a statement of particle conservation in a

two-dimensional phase space. The simplified Ampere's Law describes the

build-up of the electric field as a function of the electron current.

There is an alternative to using Ampere's Law in the

one-dimensional approximation. Gauss' Law, Eqn (3a), can be used to

determine the electric field. That is, a complete description for E can

be obtained from:

9E(z,t) = !p(z,t) (7)

0

This is possible because E responds only to changes in the charge

properties of density and current, not magnetic fields, in one

dimension. The charge density p(z,t) can be de.ermined from f(z,v,t)

13



through the relationship,

p(z,t) = -e f(z,v,t) dv (8)

fall v

Therefr-, an equivalent approach is to use Eqn (5) with Eqns (7) and

(8) to solve the one dimensional SGEMP problem. For higher

two-dimensional and three-dimensional situations, Ampere's Law, Eqn

(3d), must be used because magnetic fields are present.

SOLUTION TECHNIOUES FOR ONE-DIMENSIONAL SGEMP. There are two basic

approaches that can be used to attack SGEMP, numerical simulation and

numerical solution. A third possible technique, exact analytic

solutions, is only feasible for very restricted, idealized cases. This

is true because even in one dimension, the equations are a set of

coupled, nonlinear, integro-differential equations which have no

closed-form, analytic solution for an arbitrary source. Nonetheless,

there are some interesting cases which do have analytic or semi-analytic

answers (Ref 4).

Numerical simulation is, by far, the most common approach taken tc'

solve the SGEMP problem. This technique is equivalent to the solution

of Eqn (5) by the method of characteristics (Ref 25, Chapter 8). The

characteristic lines for the Vlasov Equation, by itself, are those which

exist in (t,z,v) space such that their directions are determined by dt =

k, dz = kv, and dv = ka, where k is a constant and a = acceleration.

Thus, if numerical solutions are sought such that v = dz/dt and a =

dv/dt, the characteristics of the Vlasov Equation are being followed.

'Tote that:
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dv _ d2 z _ F e _E(zt) (9)

a dt d m

is a representation of Newton's Second Law. The idea in numerical

simulation is that the particles (electrons) move in accordance with Eqn

(9) and the definition of the particles position as a function of its

velocity, v = dz/dt. Therefore, "particles" representing a large amount

of charge can be moved about with Eqn (9), and the electric field found

with Gauss' Law or Ampere's Law. This is called "particle pushing".

There are several documented computer codes that employ particle

pushing (Refs 7, 8, 10 and 15). The major drawback of this method is

that the smoothness of the solution depends upon the statistical number

of "particles" which are tracked at one time. This is why it is truly

numerical simulation. Electrons are simulated by a given amount of

charge in a numerical mesh. They are injected into the mesh, moved

about using prescribed physical laws, and "killed" when they leave the

system, return to the emitting surface, or are reduced in energy below

some pre-determined value. The primary concern in actually implementing

such a procedure is the particle weighting scheme; that is, proper

treatment of the particle density within each cell. The actual solution

of the equations of motion and Gauss' Law (or Ampere's Law) is done

through conventional finite difference techniques. Elaborate computer

programs have been written which solve the SGEMP problem in one, two,

and even three spatial dimensions using particle pushing algorithms.

An alternative to particle simulation for the general problem is to

solve the equations numerically. There has been one documented finite

difference solution to the plasma equations (Ref 12). The solution was

done in two spatial dimensions, primarily to study secondary electron
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effects, not highly space-charge-limited regions, although it clearly

could be used for such a purpose. There does not appear to be a well-

documented finite difference study of a one-dimensional SCEMP model

using the Vlasov Equation to analyze the transient behavior of the boun-

dary layer.

The subject of this dissertation is the application of a third

numerical technique, the Finite Element Method, on the highly

space-charge-limited SGEMP problem in one dimension.

MATHEMATICAL CONSIDERATIONS. Equation (5) with Eqn (6) is a system

of nonlinear integro-differential equations. Certain features of these

equations must be kept in mind before any attempt is made to solve them.

The Vlasov Equation describes convective transport and contains the ad-

vection term, vz . It is well known that the numerical treatment of

such a term requires care. For example, Richtmyer and Morton show

that the standard, centered, second order finite difference approxima-

tion of this term is not satisfactory (Ref 26, Sec. 12.3).

Also, if an explicit finite difference scheme is used on the time

variable, t, then it is likely that some type of restriction must apply

to the relative size of the z-step versus t-step, such as the Courant-

Friedrichs-Lewy condition (Ref 26 Sec. 10.2):

-Y-- 1 (10)

This condition ensures that the propagating pulse is not allowed to

traverse more than one z-cell in one time step when an explicit scheme

is used. It seems reasonable to assume that a similar condition should
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exist in the velocity direction, such as:

jaAtj <

where a is the acceleration. However, there is no guarantee that any of

these criteria will preserve stability for the finite element equations

needed in SGEMP calculations. In Chapter IV, data will be presented

which demonstrate the usefulness of these Courant conditions for the

present problem. There are some cases for which these conditions are

unimportant. This will also be discussed in further detail in Chap-

ter IV.

PHYSICAL CONSIDERATIONS. Besides the purely mathematical concerns

mentioned above, there are physical restrictions which need to be con-

sidered. Since the distribution function, f(z,v,t), represents a

particle density, physically it must always be positive. However, when

numerical techniques are used to propagate a pulse through a mesh, os-

cillations in front of, and behind the pulse often occur (Ref 27). Con-

sequently, the distribution function may become negative. However, this

is due to the numerical behavior of the algorithms rather than some

actual physical effect. It has been reported that in nonlinear problems

such as this one, the negative oscillations can very quickly become

intolerable (Ref 22, p. 369). Therefore, steps must be taken to

mitigate this potential hazard.

The second physical requirement on solution to the SCEMP

equations is due to the concept of the plasma Debye length. In ration-

alized MYS units, the Debye length for the electrons of a plasma is

defined as (Ref 28, Chapter 8):

17



1D e (12)

where k = Boltzmann constant = 1.38 x 10- 23 Joule/K

T - temperature of electrons in OK

n - number density of electrons in m
-3

This definition is based upon the plasma being in Maxwell-Boltzmann

equilibrium, and represents the distance within which the electrons are

able to interact individually. The number of electrons within a Debye

length of each other are just those contained within a sphere of radius

X D  • Using Eqn (12), this turns out to be N, , where,

N = 4, (eokT/e)3'/ 2N1=-x (13)

The charge at the center of this sphere is screened from those which lie

outside the sphere.

This collective behavior of a plasma has important implications to

the numerical solution of Vlasov's Equation. If the spatial grid is

chosen so that it is larger than the Debye length, the numerical scheme

will not be able to handle the steep gradients in particle density which

would occur for every cell width. Therefore, the mesh spacing of the

spatial variable, Az, must be sufficiently fine to resolve the plasma

Debye length.
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BOUNDARY AND INITIAL CONDITIONS. In order to complete the solution

to Eqns (5) and (6), boundary conditions and initial conditions must be

presribed for the system of equations. The initial conditions for the

problem specify that the following variables are zero at t = 0:

f(z,v,O) = E(z,O) = S(z,v,O) = 0, for all v,z > 0 (14)

The boundary conditions on the Vlasov Equation can be treated in

the same manner that any transport phenomenon is handled. In the (z,v)

mesh for the one-dimensional problem of Fig. 1, there is only one

physical boundary that represents the division between the infinite

sheet of material and space, the boundary at z=O, v >0. However, all

four boundaries must be considered. Basically, free surface boundaries

exist for this equation on all sides of the mesh, similar to the

conditions described by Bell and Glasstone (Ref 29, Sec. 1.ld). The

difference is that for the Vlasov Equation, particles are restricted to

move in only one direction for any given part of the mesh. Therefore,

particles which are allowed to enter (exit) the mesh at z=O ( zz )
max

cannot exit (enter) from that same part of the boundary. This makes the

free surface boundary conditions exactly correct at these locations, not

the idealization referred to by Bell and Glasstone. Using the free

surface boundary conditions at z=-+v is an idealization, however, formax

the assumption must be made that no electrons can return after leaving

the mesh from either of these interfaces. Specifically, the free

surface boundary conditions require that electrons which leave the mesh

cannot return. Therefore, the following conditions must be met along

the boundaries of the mesh, as depicted in Fig. 1:
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f(z,+v maxt) = 0, for all z,t (15a)

0 , v<O

f(z maxV,t) = ree, v> (15b)

source, v>O

f(O,v,t) = sre, (15c)
free. v O

f(z,-v maxt) = free, for all z,t (15d)

Equation (15a) is true because it is assumed that no electrons can

accelerate out the top of the mesh. Therefore, the only flow possible

is into the mesh, which is set to zero. The distribution function is

allowed to be whatever it wants to be at z m v >0, and, z=0, v < 0;max'

that is a free boundary.

Special note must be made about the conditions that exist at z=O,

v>O, Eqn (15c). Because the source of electrons is assumed to be only

at the surface, The boundary condition at this interface is the true re-

quirement to get electrons into the mesh. That is, there is no volume

source, S(z,v,t), which is spread throughout the region of interest.

Rather, the source only exists at the boundary, and, therefore, actual

insertion of electrons into the mesh will be done through a boundary

specification.

The boundary condition for the electric field is taken care of

automatically by having the correct distribution function. There are

only two boundaries for E(z,t): z=0 and z- m. At the interface of a

near perfect conductor (like Aluminum) the boundary conditions for

Maxwell's Equations require that only the normal component of E exist

near the surface. Inside the conductor, E is zero (Ref 30, Sec. 8.1).
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Therefore, the E field on the surface is determined by having the

correct charge density on the surface. Since it is reasonable to assume

a perfect conductor for the SGEMP problem, the distribution function,

f(O,v,t), a surface charge density, will determine the correct electric

field on the surface. At the other boundary, z=z , the electric
max

field is allowed to take on whatever value f(z ,v,t) forces it to be.
max

SOURCE DESCRIPTION. The final remaining topic of discussion to

conclude this chapter on SCEMP is the way that the source of electrons

can be described. The determination of the electron emission properties

is a very complicated process in itself. There are elaborate computer

programs which perform these calculations (Ref 31). They take into

account such factors as: the thickness, shape and composition of the

target; the angle of incidence, energy spectrum, time history and total

fluence of the photon radiation; and the individual nuclear processes

which release electrons (Compton scattering, photoelectric effect and

pair production). This is a difficult problem to solve in itself. For-

tunately, however, it is possible to separate the electron emission

problem from the SGEMP problem. That is, the electrons which are

emitted into space from initial arriving radiation do not interact ap-

preciably with the late arriving radiation. The probability of a photon

interacting with an electron in free space via Compton or Thomson

scattering is extremely small due to the very low density of electrons.

For example, the electron number density for a typical SGEMP plasma is
_ 0! 2  cm- 3  .1

c For Thomson scattering, the cross section for interac-

tion is 6.0 x 10-" cm2 /e- , which is larger than for Compton scattering

(Ref 2, Chapter 23). Therefore, the linear attenuation coefficient is

about 1.0 10- !3 cm at most. This is to be contrasted with photon

22



scattering probabilities in a solid material with densities of I024 cm-3 ,

and linear attenuation coefficients of approximately 0.1 cm-  . As

a result, all treatments of SGEMP in existence rely on pre-determined

emission properties.

As was just noted in the previous section, the SGEMP problem has a

unique condition on the source of electrons. Because there is no actual

volume source, but only a source defined at an interface, the emission

of electrons is really a boundary condition. Thus, from now on, Eqn (5)

will be considered to have no driving term on the right-hand-side.

Rather, the boundary conditions on Eqn (5) will act as the electron

driver.

An assumption that is very frequently made about the electron

source is that the energy, hence velocity, dependence and time

dependence are separable. That is, one assumes,

f(O,v,t) = T(t) fv(v), v>0 (16)

This separation is for convenience only, and is approximately true.

Should some variation of the velocity spectrum as a function of time be

supplied, there are no unique difficulties which would arise in the

solution.

VELOCITY DEPENDENCE OF ELECTRON SOURCE. Numerical calculations of

the photomission properties for X-ray radiation show that the electron

energy spectrum is represented well by an exponential function when the

X-rays are treated as blackbody radiation. The results also show that a

a cose angular distribution is a good approximation (Ref 5). If the X-

rays are normally incident on a flat surface, then the electron velocity
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spectrum is reduced to the following expression in one dimension (see

Appendix B):

f (v) =± Y o(---- [sec 2 /m] (17)v w1 2wI

where Y1 = material yield (electrons/Joule)

w, = exponentiation energy (Joules),
which is property of material and

photon spectrum

o = X-ray fluence (Joule/m2 )

Ei(x) = exponential integral (Ref 32, Chapter 5)

= fr -t 
dt

It should be noted that variations other than the above type of exponen-

tial dependence of the velocity spectrum are possible, depending on the

exact nature of the source.

TIME DEPENDENCE OF ELECTRON SOURCE. The choice of the time

dependence of the source function, T(t), is a crucial one since it is

this parameter which determines whether or not scaling of the SCEMP

problem is possible. Carron and Longmire (Ref 6) have shown that if the

X-ray pulse rises as a integer power of time, the one-dimensional,

normal incidence SGEMP boundary layer scales. This means that the

problem can be solved once, with all variables scaled to this one

solution. If the scaled variables are represented by t', z', v', f',

a', and S', then these similarity variables are defined by: t=Tt',

z=Lz', v-<v>v', f-Nf'/<v>, a-<v>a'/T, and S-NS'. The variables, t, z,
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v, f, a and S are defined in Eqns (2) and (5). The parameters, T, L,

<v> and N are the plasma period, characteristic length, average velocity

and a reference number density of the electrons, respectively. If the

time dependence is slowly varying enough, then the equations may be

reduced to a quasi-static case for which closed-form or quadrature

solutions exist (Ref 4).

Although these cases are of general interest for their simplicity

and for certain laboratory sources, SGEHP caused by a nuclear detonation

and some pulsed electron beam sources are driven by an approximately

exponentially rising and falling pulse. One analytic form of this

dependence frequently used is:

T(t) = c 3  
eC 

(t

i + e c 2 ( t - )

where c3 = normalization constant (sec -1 )

c I = approximate rise rate (sec -1 )

c 2 = approximate fall rate (sec-1)

c 4 = approximate peak time (sec)

The following condition is used as a normalization requirement:

fT (t) dt = I
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When this integral is carried out, c3  is determined to be,

c2 sin (c/c. 2 )

c.3  
',20)

ir eci CL4

If the source is represented by Eqns (16), (17) and (18), only a

general numerical solution is possible using either direct techniques or

particle simulation.

SUMMARY OF NUMERICAL PROBLEM. The next chapter begins the discus-

sion of the finite element techniques for the SGEMP boundary layer in

one-dimension. For ease of reference, the mathematical problem is re-

stated here. The distribution function for the electrons, f(z,v,t), sa-

tisfies the Vlasov Equation:

f(z + v--f(z,v,t) - !E(z,t)--v(zvt) = 0 (5)
3t az m

The electric field, E(z,t), is related to f(z,v,t) via:

_E(z,t) = [vf(zvt) dv (6)at Of
all v

The initial conditions for this system of equations are that:

f(z,v,O) = E(z,O) 0, for all v,z ) 0 (14)
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The boundary conditions needed are:

f(z,+v maxt) - 0, for all z,t (15a)

O, v < 0

f(z ma,v,t) = (15b)
free, v >0

( T(t)f (v), v >0
f(0,v,t) = (15c)

free. v < 0

f(z,-v ,t) free, for all z,t (15d)
max

The behavior of the distribution function at the boundary can be approxi-

mated by:

f (v) = YoE(2) (17)

Finally, the time history of the electron source, T(t), is assumed to be

of the form:

eclt

T(t) c e (18)

3 c t
1 + e 2 E47
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III. The Numerical Techniques

This chapter will present all the numerical approaches used for the

solution to the SGEMP one-dimensional boundary layer problem discussed

in Chapter II. Primarily, this consists of the application of the

finite element method (FEM) to Eqns (5) and (6). But there are several

other considerations. The time integration is a vital part to the

solution of this problem. Also, the boundary conditions must be handled

with care. Finally, the resulting set of algebraic equations requires

an efficient sclution technique, which is closely coupled to the

computer requirements (storage and processing time) for the entire

method. First of all, a discussion of the FEM, itself, is in order.

THE FINITE ELEMENT METHOD. The FEM is a numerical technique which

provides a systematic method for solving physical problems in an

arbitrary global mesh. The mesh can be nonuniform and irregular,

composed of "elements" of any shape, but usually they are chosen as

simple polygons (rectangles, triangles, tetrahedrons, etc.). Another

important feature of the technique is that it allows controlled applica-

tion of virtually any reasonable order polynomial approximation in the

mesh. Mathematically, the FEM is an extension of the Ray-

leigh-Ritz-Galerkin technique (Ref 17, Chapter 1). The global region is

subdivided int, smaller regions called "elements". The unknown function,

g(x), is expanded into a set of piecewise polynomials,P.(x). That is,
1

g(x) "Z 1 (x)g (21)

J=1
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The FEM prescibes the way that the trial functions are to be chosen.

For Lagrangian elements, they are built so that for every node, k,

ij(x) = 6jk This gives the expansion coefficients, g. , physical

significance. In this dissertation, the expansion coefficients are the

distribution function values, and the the electric field values, at the

nodes.

METHOD OF WEIGHTED RESIDUALS. There are, in general, two different

ways that the solution via the FE1Y for any problem may be set up (Ref

18, Sec. 3.4). The first approach is to solve a variational problem.

That is, the physical situation is stated as an integral relationship

for an entire set of functions - a functional. Then, the correct

solution is that function which minimizes the functional. This method

is very common when there exists some physical variable which must be a

minimum as some parameter is varied throughout its range, such as the

Lagrangian (kinetic energy - potential energy) of a conservati, e system.

The FEY is an integral (global) solution technique, as opposed to a

discrete (local) method such as finite difference methods. The latter

approach numerically solves the differential equations for the physical

situation.

Of course, both the differential and integral equations represent

the same physical reality. However, it is not always possible to

determine the correct functional for a particular problem. When this

happens, a different approach must be taken. The FEM can still be used

by developing global, integral expressions from the differential

equations. The Method of Weighted Residuals (MWR) is such a process.

The residual is the difference between the true solution and the approx-

imate one. The differential equation is multiplied by a set of
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functions, called weights, and the new equation is integrated over the

entire solution domain. This converts a local, differential equation

into a global, integral relationship. In this work, the finite element

equations are derived using the TAWR, as discussed in Zienkiewicz (Ref

18, Sec. 3.4).

GLOBAL FINITE ELEMENT EQUATIONS. Let the distribution function,

f(z,v,t), be approximated by a set of N trial functions, N.(z,v),
1

i=1,... ,N. That is,

f(zv,t) = N(z,v)f.(t) (22)

j=1

where f.(t) is a nodal value of f; f.(t)=f(zj,vjt). Likewise, let

N

z

E(z,t) Wk(Z)Ek(t) (23)

k=1

where Mk (z) are a set of Nz trial functions for the electric field, and

E k(z)=E(Zk't) are the E-field nodal values. These approximations for

E(z,t) and f(z,v,t) are used in Eqn (5). When the result is multiplied

by W.(z,v), i=1,...,N, the MWR weights, and summed and integrated over
1

the entire region, the following equation is obtained:

ff
[Wi(z,v)Nj( ,V ,-3(t) + v14i(z'v)-izJ(Zv)fj'(t)

1...Jfi a t i 3z' 3
i=1 j=1 z v

M k(z)Ek(t)Wi(z,V),vi(z,v) f.(t)] dvdz = 0 (24)
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Recall that the source function, S(z,v,t), has been set to zero because

the electrons are emitted via the imposition of an appropriate boundary

condition. This equation can be written in a more condensed matrix

form:

_ INxNdf(f+ [A ]NxN If(t4 [Av J  E(t) f(t) =0 (25)

with the help of the following definitions:

(A) W vi(z,v)Nj(z,v) dvdz (26a)

ij JJ3 1 (z v

(zN

(Av J(Z[ v-- j(z,v) dv] dz (26e)
z 1.-vf i a

Thus, [A], [Az], and the [A ] are NxN matrices, and {f(t)} is an Nxl
z v

matrix (a column vector).

Once the weight and trial functions are chosen, and the integrals

in Eqns (26) are performed, Eqn.(25) can be solved as a set of N first

order, ordinary differential equations in time. Applying the same

approach to Ampere's Law in one dimension, Eqn (6), one finds:

[D] N z (t) Z - [D] z z If(t)N z x 0 (27)
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where,

(D) = fP (z)M (z) dz (28a)

= e (fPZ) fQ(z~v) dvi dz (28b)

D ij E i jV

z v

and where the dot above the E means differentiation with respect to

time. The P.(z), i=l,...N , are the weight functions; Q.(z,v),

j=I,...N , are the trial functions for f(z,v,t); and the M.(z) are the
z J

trial functions for E(z,t).

Note that in this general formulation of the finite element

equations, the nodal points are not necessarily the same in both

equations. That is, they could be solved in two separate meshes.

ELEMENT SHAPE AND MESH DESCRIPTION. Before proceeding further, it

is necessary to discuss the choice of element and mesh configuration,

and the weight and trial functions which are compatible with these

choices. The simplest element shape that can be used for the Vlasov

Equation is a rectangular element in (z,v) space. There are many

advantages in using rectangles in this problem, and some disadvantages.

In order to demonstrate the methods useful in the application of the FEM

to one-dimensional SGEMP, I chose rectangles. For a detailed discussion

of the advantages/disadvantages of different element shapes and less

retricted meshes, see Appendix C.

A rectangular mesh is regular. That is, for linear Lagrangian

elements, the node pattern consists of the set of (zI , vj ) with
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I=I,...,N ; J=I,...,N . For every z there are N v 's and for everyv z I v J

v , there are N z 'S. A typical rectangular mesh is depicted in Fig.J z I

2. Of course, the mesh can, in general, be non-uniform in either the z

or v direction independently.

THE TRIAL FUNCTIONS. The description of the trial functions

(sometimes called approximating functions or shape functions) can most

easily be described in the local coordinate system of the element. For

rectangles, the simplest trial functions which can be used are linear

polynomials with nodes at each of the four corners, as shown in Fig. 3.

These trial functions are members of the Lagrange family of polynomials.

They are also belong to a family of polynomials which are especially

suited for the FEM because of their simplicity. Zienkiewicz refers to

the entire set as the Serendipity family (Ref 18, Sec. 7.5). They

satisfy the essential requirement of the finite element approximation:

continuity of the unknown function across element interfaces. These

linear functions are defined in the local coordinate system by:

11
Ni, ) = i + i )(l + ni (29)

4 i =i = 1,...,4

where the transformation from the global to the local system is made by:

=1( z - z ) (30a); = .(v -
a cb

The constants, a, b, z and v are defined in Fig. 3. Note that each
c c
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of these functions has the property of being unity at one node, and zero

at the other three nodes, with a linear variation in between.

Of course, the variation in the F and n directions are independent

of one another, and as such, can be treated separately. Thus, let

LI () = L(I - ) (31a)
2

= +(1 ) (31b)

with like definitions in the n -direction. These are the basic linear

trial functions in one dimension, sometimes called tent functions

because they construct a tent-like shape when they are built on a series

of nodes (see Fig. 4a). The rectangular functions of Eqn (29) are

built from these. Using the nodal numbering system of Fig. 3:

NI(En ) = L1 ( )L1 (n) (32a)

W2(E,n ) = L2( )Lj(n) (32b)

iN3(En) - L2(E)L2(n) (32c)

N4(,,n) = Ll(&)L 2 (n) (32d)

Just as the combination of tent functions over one-dimensional elements

produce the global, piecewise trial functions shown in Fig. 4a, the

global functions required for the two-dimensional problem, N (z,v),i

i=1,...N are built from the local trial functions., N i(, B ), i=1,...,4.

Figure 4b shows the tent functions for one element in two dimensions,

and Fig. 4c depicts the tent functions at one node over a series of
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rectangles.

WEIGHT FUNCTIONS AND UPWINDING. The residual weights, Wi(zv),

i=l,...N, are also piecewise polynomials and so can be constructed most

easily in the local coordinate representation. One of the more common

choices for the weight functions is, Wi(z,v) = Ni(z,v), for all i. This

is sometimes referred to as the Galerkin Method. However, an upwinding

procedure will be used (Ref 33, and Ref 19, Chapter 1) in anticipation

of special requirements for the advection term of the Vlasov Equation.

In this approach, Galerkin weighting appears as a special case.

Referring to the local system, let:

WI( = [LI(C) + aIF(C)][L1 (n) + a4F(T)] (33a)

W2(E,n) = [L2 (&) - aIF( )][LI(n) + a2 F(n)] (33b)

W3(&,n) = [L2 (E) - a3 F( )][t 2 (n) - a2 F(n)] (33c)

W4(EY) = [L1 (E) + a3 F( )][L 2 (n) - acF(n)] (33d)

The a are the upwinding parameters. Note that Galerkin weightingi

occurs when a =0, for all i=1,...,4. The side for each a is shown ini i

Fig. 5. The function F(-) is chosen so that F(.)=O at the nodes. This

preserves continuity of the weight functions at element interfaces. If

F(.) is a positive function, the sign of ai is picked to match it with

the direction of flow of electrons. Thus, for a, and a3 , the sign will

be positive when v>O, and negative when v<O. For a2 and a4 , the sign is

always negative because the electric field decelerates the electrons

during the times of interest. Finally, the integral of F(. ) over the

element should be unity. A function which fits all these requirements
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is:

3

F(x) = - -(I - x)(1 + x) - 3L1(x)L2(x) (34)
4

Equations (33) have been constructed from the following one dimen-

sional expressions for each side of the rectangle:

W.(x) = L.(x) + (-1) i+lF(x) (35)1 1

i = 1,2

The shape of one of these weight functions, W(x), is depicted in Fig.

6 for several c's. It is the biasing of the weights towards one node

with repect to the other node that gives upwinding an advantage for

propagation problems.

ELEMIENT MATRICES. The actual evaluation of Eqns (26) and (28) is

normally done in the local coordinate system of the element. Then, the

transformation is made to the global system. This transformation is

known as the "assembly" process of the FEM and involves a Boolean

mapping of the local numbering system for the nodes to the global

numbering system (Ref 34, Chapter 6). In symbolic form, for example,

N
e

[A] N xN 
= A,[a(e)14 x4  (36)

e=1

which says that the global NxN [A] matrix is constructed from a 4x4
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element matrix (for linear rectangular elements) by "summing" over the

number of elements, N , in the system. The script " is used to

denote that this sum is a special assembly procedure defined by a

Boolean transformation. Appendix D has the details on the exact meaning

of Eqn (36).

The expressions for [a(e)] and [a(e )] are straightfoward:

+1 +1

(a(e)) a , (E,n) d~dn (37a)j f4i ( ,n)llj(

+1 +1

(e) = (,n)(bn + v (,,n) d dT1  (37b)zae)ij 1fic3

-I -1

In these equations, the Jacobian of the transformation from global to

local coordinates, a-b, has been included.

The expression for matrix [A] j, Eqn (26c), is a little bit more

difficult to write in local coordinates because of the explicit

dependence on each M (z). However, M (z) is a tent function over the

.Tth node for the linear approximation of regularly-spaced rectangles.

Therefore, H (z) in Eqn (29c) is either L1 (&) or L 2 ( ) in the localJ

system. The assembly of [A does not occur through Eqn (36), but

rather via:

N
SNxNe 4x4

[jA , 2a (38)
v J AN V1e=l

That is, [A I is built from two element matrices, rather than one, and

the way that the matrices are combined depends not only on the Boolean
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transformation, but also on the Jth position of the global column of

nodes. See Appendix D for details.

Explicitly, then,

+1 +1

(as)iJ = afL ()Wi( ')-nJ( 'r) d(dF (39)

= 1,2

Now, using Eqns (32) and (33), the elemental matrices can be

evaluated in closed form to obtain:

ra(e) =ab (I + I C + i( + (40a)
= ij _- 3 j -3jij + i 1i-)

(a(e)) Lb (I + 0 )[(3 + n n + 3n a )v + (n. + n. +n
z ij 12 j iik i j ipc 1 -5 ijp

(40c)

(+ nia p(a(e)) 2 ( + ) [5 + (9 + 3j)k (40c)

VI ij 20 j (2 +i )  Pak

a(e)) 0 ( +n i a

av L n--r (5 +7-L% (9 + 3Ej+ 2  (40d)

v2 ij 20 j (2 + &j+2)  '+ 2d

where i,j=1,...,4; and all subscripts are cyclic (that is, j-1= 4  when

j=I, and j+2= when j=3, etc.). The following replacement rules are in

effect for k and p:

k = I when i = 1, 2

k = 3 when i = 3, 4
p = 4 when i = 1, 4
p = 2 when i = 2, 3
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Example derivations for these equations are shown in Appendix E.

CURRENT DENSITY CALCULATION. The only remaining element matrices

to evaluate are [d(e) ] and [d(e) ] which are associated with Ampere's
V

Law. There is a process that can be used for a rectangular mesh which

eliminates the need to carry out the integrals of Eqns (28). Everywhere

that a nodal value of E(z ,t) is needed, nodal values of f(z ,v ,t)

exist. Therefore, a simple numerical integration in the v-direction can

be used to evaluate Eqn (6) which will determine E(z ,t) for all J. In

other types of meshes, this would not be possible (see Appendix C).

Since f(z,v,t) is assumed linear in v, the integration required in

Eqn (6) is quadratic in v. Therefore, Simpson's rule (Ref 35, Chapter

14) will evaluate the integral exactly over each element in this approx-

imation. Thus:

N -1
V

E (t) = '(v - V )[2v kf(z , t) + vk f(z i ,t)J 6E 0
m - k+1 Vk) k Jk kzj'k+1

i e k=l

+ V f(z ,V kt) + 2 v fzj v ,t)] (41)k+1 J kk+1 f J k+l

N = number of nodes in v-direction.
v

TIME INTEGRATION. Equations (25) and (41) are first order,

coupled, ordinary differential equations in time. The time integration

is performed by using a two-step procedure based on the Lax-Wendroff

method (Ref 19, Chapter 2). The algorithm is defined by the following

equations:

f(t + t) = f(t) + A.t(t) (42a)
2 2

f(t + At) = f(t) + At?(t + 2t) (42b)
2

46



This scheme is accurate to second order. Applying this method to Equs

(25):

Ist Step:

Nz
[A]Lfi+ [Al{f}i- At[Az{f}i +- [AM t I{f} (43a)

J=1

2nd Step:

Nz
[Aj{f 1 [A]{f}* - At(A J{f} + t [Av],Ej+ f i  

(43b)1+1 + J-

The electric field is determined from Eqn (41) using the same procedure:

Ist Step:

V
Ei+ - E i +eat T%
J J I2 .1-_Vk+1_ vk)2vkf i(z v k) + vkfi(zJ, vk+l)

+ vk+lf i(zjsvk) + 2Vk+Ifi(zJvk+l)] (4 4 a)

2nd Step:

N -I

v k I - V k)[2vkf i+(z v k) + vfi+'(J'Vk+

+ Vk+fi+ zJ'vk) + 2vk+Ilf+ (zJVk+l)] (44b)

The procedure for marching in time is to start with Eqn (4 3a) to
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determine if) Also, Eqn (4 4a) will fix [E) *+. Then, Eqns (44b)

and (43b) calculate {E} i+ and f) i+l respectively. The whole process

can now be repeated. Note that since E and f are determined at the same

time intervals, it is unimportant which order they are computed.

COMPUTATIONAL IMPLEMENTATION. The one-dimensional SCEMP boundary

layer problem has now seen reduced to a set of algebraic equations, Eqns

(43) and (44). Now, a numerical technique must be picked to solve these

equations, and the boundary conditions properly applied.

The matrices [A], [Az], and [Av] J are NxN, where N = total number

of nodal points. Since there are Nz of the [Avi , the problem size in

terms of computer memory for just the matrices is NxNx(N z+2). Thus, if

N =20 and N =10, the rectangular mesh will have 200 nodes, with thez V

matrices having 880,000 members! Fortunately, most of these are zero;

that is, the matrices are extremely sparse. In fact, it can be shown

that for the rectangular mesh,

N (A,A) = (3N - 2)(3N - 2) (45a)

N,(A) = 21N N - 14N - 18N + 12 (45b)ZV z V

where N means the maximum number of non-zero members for the specified

matrices. Also, Eqn (45b) includes all Nz of the Nx4 matrices. Thus,

for the 20 x 10 problem, at most there are only 5376 non-zero members.

Because of this, sparse matrix techniques may be used to solve the

equations. I chose a fully packed scheme which stores only the non-zero

members of the arrays. Pointer arrays are used to specify which row and

column each member is in. The algebraic solution is done using a
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Gauss-Seidel iteration technique (Ref 35, Sec. 20.8) in fully packed

form (Ref 36). Matrix [A] is the only one which needs to be inverted,

and is diagonally dominant for most values of . Thus, the

Causs-Seidel method is guaranteed to converge.

The boundary conditions are implemented by modifying the load

vector, fb} , for the form [A] (x} = (b} , as well as the appropriate

row and column of [A] (Ref 18, Chapter 20). This reduces the number of

unknowns in {x} by the number of boundary values needed to be specified.

Using Eqn (16) and (17), the following boundary condition on f specifies

the source of electrons:

f(0,v,t) =-Y±o ET 2 ) r(t) [sec/M 4 ] (46)
w1 2w,

v>0

This is valid for an exponential energy source.

The next chapter presents the results obtained from the solution of

the equations described in this chapter for several conditions.
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IV. Results

In this chapter, the numerical results obtained by the application

of the techniques presented in Chapters II and III are given. These

results are organized in order of increased computational difficulty.

First, sample data are given for pure advection, or wave propagation.

Then, both SGEMP equations are solved for the linear case. The physical

implications are analyzed and compared with the computer generated

results. Next, the nonlinear set of equations are solved, first with a

linear time history, and then with an exponential time dependence. This

is compared with "particle pushing" techniques and quasi-static theoret-

ical analysis. Finally, general considerations about mesh sensitivity,

particle conservation and convergence criteria shall be analyzed.

PROPAGATION STUDIES. The simplest form that Eqn (5) can have and

still carry some physical meaning is obtained by dropping the nonlinear

term to give:

af(z vt) + wv.f(z,v,t) = 0 (47)
at 8z

This equation describes pure advection, or propagation, of the unknown

function, f(z,v,t), at velocity, v. It is still a first order, hyper-

bolic, partial differential equation, but is now linear. Given initial
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conditions that prescribe the shape of the distribution, say f (z,v) =
0

f(z,v,0), then the exact solution to Eqn (47) is that function which

translates the shape of f at the velocity, v, along the z axis.

Therefore, the solution to Eqn (47) can be represented by:

f(z,v,t) = f (z - vt,v) (48)

This problem, and numerical methods to solve it, has been the

subject of several studies (Ref 19, Chapter 19 and Ref 27). In particu-

lar, a very stringent propagation test can be done when Eqn (47) is

solved using discontinuous initial conditions in z. A square wave pulse

meets these conditions.

The primary purpose in doing such a test is to determine how

accurately the finite element technique treats a propagating signal.

Since oscillations are a well-known result of numerical solutions to

wave equations, this test also helps to study the effect of various

upwinding parameters on these oscillations. Several computer runs were

made to evaluate different ai . The test was done in a manner similar

to Book and Boris (Ref 27). The pulse existed only at one velocity,

with vat/Az = 0.2. The background density was 0.5 and the pulse height

was 2.0 (both quantities measured in arbitrary units). All the a i1,

were set to the same magnitude, with a, and Q3 positive for

positive v and negative for negative v • Both 02 and a were always

negative. The results of this study are shown in Fig. 7, after 100

time steps. They are superimposed upon the initial square wave. Note
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the characteristic oscillations in front of, and trailing, the pulse.

It is clear that the effect of increasing the magnitude of a from 0 to 1

is to reduce the oscillations, while introducing dispersion in the

pulse.

There is, therefore, a trade-off between oscillatory behavior and

dispersion. A value of about 0.5 appears to be a logical choice for a

compromise. However, for practical considerations, another value makes

more sense for most problems. Consider Eqn (40a). When JaiI = 2/3, and

the conditions on the sign of the ai are met as described above,

a12
= a13 = a31 = a32 = a~l a 4a 2 =O. Because six out of 16 members of this

element matrix are zero, there is a considerable reduction in the number

of non-zero members of [A]. The savings is slightly more than a factor

of two for a regular, rectangular mesh. Since this is the coefficient

matrix for the system of of algebraic equations which determines

f(z,v,t), execution time is halved by using I( i =2/3, i=1,...,4. This

is due to the decrease in the number of arithmetic operations required

by the Gauss-Seidel iteration scheme. Only the non-zero members of [A]

are used for the tightly-packed scheme used in FEMNEP. For the

square-wave test, there are 847 non-zero members of [A] when la I =2/3.

But, when a * 2/3, there are 1810. This is the maximum possible for

the rectangular mesh, N (A), as calculated by Eqn (45a), with Nz =61 and

N -4, used for this problem.
V

However, an interesting feature of using the value of lail -2/3 is

that the Gauss-Seidel iteration technique does not converge for the

square-wave discontinuous pulse. For all other values of a tried, the

method converged for this problem, including a =0.650 and a =0.670.

Also, the iteration scheme worked well for all values of a,* including
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=2/3, for smoothly varying input pulses. The only exception to this ob-

servation occurs whenj al +1, ac which point the Gauss-Seidel technique

no longer converges. The last section in this chapter on "Convergence

Criteria" gives a comparison of the computer execution time for Ia.I
1

=2/3, and li 1=0.60.
1

ELECTRIC FIELD FROM THE LINEAR VLASOV EQUATION. The next test that

can be made on the finite element technique is to add the electric field

to the solution. The nonlinear term, E(z,t)2(z,v,t) is still ignored.
LN

In the finite element approximation this implies that 7- [A E j(t){f(t)}

J=1
is zero in Eln (25). Of course, the physical implication of making the

equations linear is to prevent the electrons from interacting with each

other. That is, an electric field is built up by the removal of

negative charge from the surface, but the electrons, themselves, are not

affected by it. The linear equations allow for the separation of charge

with no boundary layer build up. In effect, a parallel plate capacitor

of infinite cross sectional area is the physical model described by the

linear equations. If Q represents the charge per unit area which has

been emitted from the surface, then, after all charge has proceeded past

distance z , the electric field in rationalized MKS units is:

E(z) = 0 = Nn , for all z<z (49)

E:0 E 0

and N = number of electrons per square meter.
P

The purpose of running this test is to check the effect of boundary

conditions, normalization procedures and the integrations of Eqn (41).
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The test was performed by injecting 5.0 x 106 electrons/cm2 into a 4 x20

point v-z mesh. The electrons were given only one velocity, with the

condition that vAt/Az=0.2. The a's were all set with the same magnitude

for each element. The al and a3 were positive, while the a2 and a4 were

negative. Figures 8 and 9 show the results of this test for two cases,

IC i=2/3 and a.=O. Both the electric field vs z, and the distribution1. 1

function vs z are shown at various times. The incident pulse time

history was of the form:

aB (_-at e-Bt

T(t) = (-e + e ) (50)

with a = 2/shake

3 = 6/shake

where, I shake = 10 nanosec.

Using Eqn (49), the theoretical value for the electric field, if

all 5 K 10 particles have passed z, is E t= 905.0 volts/n. Table I

shows E vs z produced by the finite element equations at t=20.2

shakes (202 time steps). From the table and the graphs, it is easy to

see the effect of using some upwinding, versus not using any, on the

electric fic • The effect on the distribution function is even more

dramatic. From Fig. 9, not only are trailing oscillations severe with-

out upwinding, but reflections off the end of the mesh at z = 95 cm are

are very apparent. This is quite visible in Fig. 9(f) and 9 (g), where
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TABLE I

Electric Field for Two Values of Alpha in a Linear Problem

z(cm) E(z) (volts/m) E(z) (volts/m)
a= 0 a = 2/3

0 904.4 904.4

5 913.5 904.4
10 898.3 904.4
15 889.9 904.4

20 922.8 904.4

25 906.5 905.8
30 899.7 905.6

35 897.5 906.4
40 899.2 906.7
45 931.5 906.6

E = 905.0 volts/m

the reflected distribution function is growing in magnitude, while with

upwinding, Fig. 8(f)and 8(g), reflections do not exist. This will be

particularly important when electrons are allowed to return to the sur-

face with negative velocity. Reflections in the distribution function

from returning electrons would be disastrous from three standpoints:

first, positive reflections in the distribution function would rep-

resent particles external to the object which are not really there;

second, growing reflections represent an instability in the calcu-

lation; and third, neg;.tive reflections giving rise to a negative

distribution function have no physical meaning and can cause instabili-

ties in nonlinear calculations.

LINEARLY RISING PULSE. The next type of solution presented is for

the case of a linearly rising pulse, with an exponential (black-

body-like) energy spectrum. This is a truly nonlinear problem, so that

the full set of cquations must be used. As a check on the results, the
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finite element solution is compared first with steady-state theory (Ref

5). This is permissible because whenever the photon flux rises linearly

with time, the electron behavior can become quasi-static under certain

conditions. Then, the time dependent term in the Vlasov Equation can be

ignored. If the energy spectrum is assumed to be exponential, the

remaining equations can be reduced to quadratures and a semi-analytic

form for the solution produced.

The time dependence for this case is given by the ramp function:

bt 0 4 t 4 t

T(t) = m (51)
0 < t < t

b = rise rate (sec- 2 )

Unit normalization of this function yields, b=2/t2 . In order to run
m

the same sample problem that is carried out in Section 11 of Ref 5, the

flux, 4 o, must be set to 1/3 cal/cm , with tm =1 snake. The material of

the object is assumed to be Aluminum, so the material yield, Y, is given

12
as 2.57x10 electrons/cal, again taken from Ref 5. Also, the exponenti-

ation energy for this material is, w, =4.77 keV.

Using these parameters, the analysis given by Carron in his report

will be valid for Eqn (51) for 0.1 < t < 1 shake. During this time,

most of the electrons will be in steady-state conditions. However, all

the electrons do not reach steady-state at the same time, since they

have a distribution of energies. Thus, caution must be used in any

detailed comparison. One-dimensional SGEMP can be solved exactly when

all the electrons are in steady-state, but the application to any type

of time dependent problem must be considered only an estimate. Nonethe-
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less, it is instructive to compare this theory with a dynamic calcula-

tion like FEMNEP, for it is the closest one can come to an analytic

solution for a nonlinear problem.

Figure 10 displays an example of what a typical (z,v) mesh looks

like for the linearly rising pulse problems. It is now necessary to

allow particles to return to the surface, which means that negative

velocities must be included in the mesh. The sign of a must always be

chosen in the direction of motion of particles through the mesh in both

the v and z variables. These directions are shown in Fig. 10.

Equation (51) and Eqn (46) were used to input the source of electrons.

Several different mesh sizes were tried, and compared with

steady-state theory. The results are given in Fig. 11, superimposed on

the theoretical predictions. For all these calculations,la l= 2/3. In
1

order to make the comparisons easier, the meshes were set up using

uniform spacing in both z and v for this case (except near zero velocity

where 20 cm/sh = 1 keV is the smallest velocity allowed).

Figure 11 clearly shows that as the mesh size is decreased, conver-

gence is obtained. The convergence is not to the steady state values,

however. But, this is to be expected. Note that close-in, out to about

three Debye lengths (where a Debye length is approximaL, 0.27 cm,

according to Carron) FEMNEP's results agree to withi- ,. (r. all that

the boundary layer is defined as a few Debye lengths thick). Figure 11

also shows that at 10 Debye lengths, steady-state theory and the

calculated results differ by more than a factor of two. Physically,

this is expected. The higher energy electrons which penetrate the

boundary layer have not reached steady-state conditions. But, most of

the lower energy electrons which are trapped in the layer have come to
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FEMNEP VS STEADY STATE THEORY

Timne =.124 Shake
Solid Curve = Theory

q LEGEND
0 o AZ=-.2, AV=30, At=.001
L= AZ.1S AV=20, At=.OOt
+ =AZ-=.075, AV=-?20, At=.00050 X

40

V.0

0.0 0O5 0 Iaz 2.03.0

DI STANCE(CM)

Fig. 11 Finite Element Comparison with Steady State
Theory for Linearly Rising Pulse
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equil Ibrium.

The next comparision of a linearly rising pulse is made with a

scaled "particle-pushing" program (Ref 7), called SCALID. Figures 12

and 13 demonstrate the electric field comparison obtained as a function

of distance and time. Both figures show results at early time, that is,

before I nsec. The problem being solved is exactly the same one used in

the last paragraph. The mesh scheme is similar to Fig. 10. However,

at these early times, the electrons are not in equilibrium, and the full

time dependent solution is being tested. These data show that FEMNEP

compares very favorably with SCALID. For all times and distances shown,

the agreement is no worse than 25%. In many cases, it is much better

than that. This result further supports the conclusion reached in the

last section which suggested that at t- 0.124 shake many high energy

electrons have not reached steady-state. This causes the agreement

between FEMNEP and steady-state theory to deteriorate beyond several

Debye lengths.

EXPONENTIAL TIME HISTORY. One final comparison has been made using

the finite element computer program in a calculation with an exponential

time history, Eqn (18). This time, the results are compared to another

"particle-pushing" program called MADI (Ref 8). The major difference

between this code and SCALID is that the MAD1 code inputs the energy

spectrum of the electrons from a one-dimensional emission code, rather

than treating it as an analytic form. Of course, none of the unknown

variables are scaled in MADI as they are in SCALID.

The problem parameters used for this comparison are as follows: a 5

keV blackbody photon spectrum, normally incident on Aluminum with a time

69



FEMNEP VS SCALED
a

0-

:Solid Curve = SCALID at t = .071 Shake
o Dash Curve = SCALiD at t = .080 Shake
-- -- -- -- -- -- -- - .. .. ................... ...- -----* ----- ..... ..... ......

''

" ...... .k .. . .. .......... ... .... ... - . ....... .. .. .... .. ... ... ...... .. .. ...... .. .. .... .. -------------

\ 0S'.

" d" .............i..........................:.................

........... .................- .....-.-:. ..... .. . .... . ......................; ....................... ..

0

.. ...... .. ......... . . . .............. . .......................... ........... ....... .......0'0

.
-- A' :o-- - M --_

0.0 0. .0 1.5 .0 . 3.0
DI ISTANCE (CM)

Fig. 12 Finite Element Comparison with Scaled Results,

Electric Fields Vs Distance

70



FEMNEIP VS SCALDD

SCAUiD =Solid Curves

4.0

/Z-:257 um

/

/7 -!B57 cn
. . . . . . . . . . . . . . . - - - . . . . . . . . . . . . . . . . . . . . . .

0.01 0.015 0,10 0.15 0.20 0. 2500
"I ME (SHARE)

13 Finite Element Comparison with Scaled Results,
Electric Field Vs Time



history defined by:

cl = 2.0/shake

c2 = 2.5/shake
c3 = 1.569/shake

c4 = 4.0 shakes

and, the total X-ray fluence, o = 0.1 cal/cm 2 .

For the finite element calculation, the same source parameters were

12
used as in the previous case; that is, Y = 2.57 x 10 electrons/cal and

wl = 4.77 keV, assuming that the blackbody radiation is represented by

an exponential energy distribution of electrons.

Using the identical upwinding parameters as before, Ia i =2/3, for
1

all i, the finite element calculation was performed in a nonuniform

grid. This was necessary so that distances out to five meters could be

used, while still resolving the Debye length close to the surface.

Table II summarizes all the input parameters for both the MADI and

FEM!NEP runs. It is interesting to note that the MADI calculation was

done with a uniform z-spacing of 1.5 cm. The FEM required smaller

spacing in close (see next section on mesh sensitivitv for discussion of

z-spacing requirements for FEMNEP).

Figures 14 and 15 show the comparison of the electric field versus

time on the surface, and electric field versus distance at t=4.0 shakes.

The discrepancy at very early time in Fig. 14 is due to the fact that

MADI must start its calculation at t=-2 shakes to avoid injecting too

many particles in the beginning. The agreement over most of the z and v

range is excellent.

MESH SENSITIVITY STUDIES. The purposes of this section are

twofold: (1) to describe the important restrictions and requirements on

mesh spacing and time step sizes, and (2) to demonstrate the convergence

of the FEM as mesh size decreases. Examples are given which show that
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TABLE II

Input Parameters for MADI VS FEMNEP Comparisons

MADI FETINEP

CLASSIFICATION Particle Pusher Vlasov Eqn Solver

NUMERICAL METHOD Finite Differences Finite Elements

SOURCE ENERGY From QUICKIE2 Code Assumed Exponential

SPECTRUM (Ref 31)

SOURCE ANGULAR
DISTRIBUTION Assumed cose Assumed cos0

NO. OF EMISSION
ENERGY BINS 20 5

NO. OF EMISSION
ANGULAR BINS 9 Analytic

EON USED FOR
E-FIELD CALCULATION Gauss' Law Ampere's Law

Z-SPACING Uniform Non-uniform

AZ 1.5 cm 0.18 cm minimum

50 cm maximum

TOTAL Z CELLS 400 44

TIME ALGORITM 2nd Order 2nd Order
centered Lax-Wendroff

finite difference

At 0.01 shake 0.001 shake

NO. OF TIME STEPS
TO 6.0 SH1AKES 800 6000

(calculation starts

at t = -2.0 shakes)
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certain recommendations must be followed to preserve the integrity of

the finite element solutions. And, results will be presented indicating

the finite element solutions converge, for decreasing mesh sizes, to the

same data that a particle code produces.

The first area of concern are the Courant-Friedrichs-Lewy

conditions of Eqns (10) and (11). They impose restrictions on the

relative sizes of the Az and At spacing. Figures 16 and 17 show what

occurs to the electric field and distribution function when At is

increased from 0.0001 shake to 0.002 shake for a fixed Av and Az mesh of

30 cm/sh and 0.1 cm, respectively. This is a variation of 0.09 to 1.8

for the Courant factor, vAt/Az when v=90 cm/sh (the largest velocity

in the mesh which particles were allowed to travel). The results show

vividly that the Courant condition of Eqn (14) must be adhered to

strictly to preserve stability. Thi cross-over from stability to insta-

bility occurs at At-0.001111 shake, or vAt/Az=l. The results also show

that once vAt/Az becomes less than one, stability is quickly achieved,

and no matter how small At is taken to be, there is no noticeable change

in the electric field profiles. There is, however, an improvement in

particle conservation, which will be taken up in the next section. An

indication that there is a net effect by making At small enough can be

seen in Fig. 17. Oscillations of the distribution function are seen at

the highest velocity profile (v-90 cm/sh) for large At.

A comment should be made at this point about the other Courant

condition, Eqn (11). This condition can be re-written in terms of the

electric field, with the help of Eqn (9):

Av[cm/sh] > 1.76 1- 7Efvolts/m] (52)
At[sh].
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Fig. 16 (continued)
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The above equation will be satisfied for all practical situations. The

Av spacing will not be much smaller than 10 cm/sh=0.29 keV, and at is

typically about 0.01 shake or less. Therefore, the smaliest that the

left-hand-side of Eqn (52) would ever get is about 1000 cm/sh . In

order for Eqn (52) not to hold true, E must be larger than 1.0 x 1010

volts/m---very large indeed. Also, very conservative figures have been

used to determine Av/At. For example, the calculations presented in

this dissertation used a Av/At closer to 20,000 cm/sh ,which pushes the

critical value of E even higher. Consequently, this Courant condition

is easily satisfied for all practical one dimensional SGEMP problems.

The importance of choosing a sufficiently small Az spacing was

discussed in Chapter II. The physical nature of the Debye length

requires Az to be able to resolve it. One way of experimentally

measuring the Debye length in a calculation is to take it as the

distance the electric field falls by a factor of 2/e. This comes from

the screening factor of exp(-z/ D) in the static equations for the

electric potential (Ref 28). From Fig. 11, E falls from 14.5 x I0

volts/m to 10.5 x 105 volts/m (factor of 2/e) in about 0.15 cm. If the

z-spacing exceeds 0.2 cm, the results should be suspect. The same

problem as shown in Fig. 11 was run with a z-spacing of 0.4 cm. These

data are presented in Fig. 18, along with the steady-state predictions,

and the Az=0.20 run for comparison. Not only is the curve for Az=0.40

cm less accurate, as might be expected, but the shape of the curve shows

oscillations. In fact, at distances beyond 3 cm , E becomes negative

and oscillating.

The restrictions on the Av and Az mesh sizes mentioned above are

the minimum requirements in relation to At step size. However, there
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TABLE III

Electric Field at Various Distances

Under Mesh Refinement at t = 0.08 shake

RUN# Az Av E(O) E(.257cm) E(.857cm)

(cm) (cm/sh) (MV/m) (MV/m) (MV/m)

1 .05* 30 .9670 .6794 .3438
2 .05* 20 .9304 .5694 .2516
3 .05* 15 .8998 .5105 .2136
4 .05* 10 .8573 .4605 .1932
5 .025 10 .8526 .4600 -
6 .05 5 .8093 .4355 -

7 .05 1* .7950 .4477 -

SCALID - - .8455 .4585 .1876

(MV/m Megavolt/meter)

* non-uniform mesh, number represents the

smallest mesh interval

are other considerations equally as important with regard to the conver-

gence and accuracy of the method. In order to demonstrate that the FEM

does produce results which converge to other known data, a series of

runs were made in which the mesh spacing was systematically reduced.

The data were then compared with the most accurate and detailed particle

code results available for one-dimensional SGEMP, the SCALID program.

Table III summarizes the results of this study.
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The data in Table III are analyzed the following way: as the v

mesh size decreases, the electric fields approach converging values. At

the last refinement, the difference in the calculated fields does not

exceed 6%, and over much of its range, it is better than 4%. Also, for

the two values for which the FEMNEP data can be compared with SCALID

results directly, without interpolation, they lie within 6.5%. The

crossover of the bottom two curves is due to the non-uniform spacing in

the z-direction for this run. A graphical representation of these

results appear in Fig. 19. When this data is coupled with the z-mesh

refinement studies of Fig. 11, convergence of this finite element

approach to the one-dimensional SCEMP boundary layer is shown. Also,

the comparison of FEMNEP data with the particle code SCALiD demonstrates

the validity of the technique.

As discussed above, the Courant condition for the v-mesh does not

apppear to play a significant role in the choosing of a Av since it is

normally satisfied for practical SGEMP problems. However, Fig. 20

shows that the v-step can not be picked arbitrarily small, without

regard to the z-step. The build-up of the knee in the curve for Az

.05 cm is not normal. It is a result of choosing too small a Av for

this Az. Note that the knee is not present for the Az = .05 cm, Av = 20

cm/sh curve. (This curve diverges from the other two curves beyond z =

.15 cm because a different boundary condition was used at z = .5 cm.)

The problem is corrected by making Az smaller. This coupling effect

between Az and Av appears to get more severe as the number of time

iterations increases, and impacts the flexibility of grid. make-up for

problems with long run times.

PARTICLE CONSERVATION. The computer program, FEMNEP, keeps track

of the number of electrons emitted at each time step, and the number
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leaving (or entering) the mesh from the free boundaries (see Fig. 1).

The total number of electrons in the mesh can also be calculated. From

this information, particle conservation is checked. The parameters

needed are:

NP = total particles in mesh per cm2

Nr = particles returned to surface per cm2

Nt = particles leaving/entering mesh at z per cm2

max

NB = particles leaving/entering mesh at -v per cm2

max

PE = particles emitted into mesh per cm
2 .

Then, PB = particle balance = PE+NR-NL+NB. For perfect conservation, PB

would equal NP at all times in the calculation.

These parameters are determined from the following equations:

z +V

max max

NP = J f(z,v,t) dvdz (53)

0 -v
max

t +v
iffmax

NR /fvf(0,v,t') dvdt' (54)

-v
max

+Vfmax
N = vf(z ,v,t') dvdt' (55)

0 8

89



tz wax

NB -e-f E(zvt')f(z,-v m x t') dzdt' (56)
' fk zlt'f~z'max't-00

tv
max

PE=ffvf(O,v,t') dvdt' (57)

0 0

The first equation is the definition of the distribution function, and

the other equations are expressions for the flow rate of particles

across a boundary, integrated over time.

Equation (53) can be expressed as a simple sum over the elements in

the rectangular mesh:

NNe 4N P = a(e)b(eIf(e)(t)] (58)

e1l i-l

where f (t), i=I,...,4, are the four nodal values of the distribution
i

function for element (e) at time, t. The other equations are in the

same form as the integral in Eqn (6). Therefore, Eqns (54) thru (57)

are calculated using the procedure described by Eqn (41). For example,

Eqn (57) becomes,

N k

t m

2 (At){ (Vk+ l -v k )[2vk f( O v k t i ) + vf(0'Vk+'p t i)

i- k-k
0

+ v f(O,v ,t ) + 2v f(o ,t )I (59)
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where, N = number of time steps out to t
t

k = velocity subscript assigned to v = 00

k = velocity subscript assigned to v = v
m max

The other equations are computed in a like manner.

Figure 21 shows these parameters for a typical linearly rising

pulse. These data correspond to the same output shown in Fig. 13. In

the graph, PE = emitted curve, NR = returned curve, NP = total curve,

and NB + NL = lost curve. This means that the curve labeled "lost"

could actually represent a gain. However, its real meaning is the total

number of electrons which either leave the mesh or enter it from a free

boundary. This figure is an excellent presentation of the overall

behavior of the electrons as a function of time. It shows that at early

time, all the particles emitted stay in the mesh. Eventually, the

electric field returns so many electrons to the surface that the total

number of them levels off. It also shows the number of particles "lost"

to the calculation is insignificant with respect to all other particle

paramters.

Figure 22 shows the same information for the exponentially rising

pulse corresponding to the electric fields of Figs. 14 and 15. In this

case, the curves clearly show that equilibrium between the emitted and

returned electrons only occurs near the peak of the pulse at t-4.0

shakes. Before this time, and shortly after 5 shakes, the total

particles in the mesh is a strong function of time. Also, it is clear

that ie number of electrons lost to the mesh plays no role whatsoever.

The next two figures present examples of the efficiency of particle
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conservation for several finite element calculations. Particle conser-

vation, PC, is defined as:

P 100 INP-PBI (60)NP

The smaller this number is, the better the conservation of electrons is

preserved. Figure 23 shows PC as a function of time for FEUNEP in the

MADI comparisons. For this particular calculation, electrons are

conserved to an accuracy of better than 90%. It is interesting to note

the tracking of this parameter with the source time history.

The final graph in this chapter, Fig. 24, displays the effect of

decreasing the time step on particle conservation. The problem used in

this example is the linear time history, and results of Figs. 16 and

17. Over most of the time range shown, the electron conservation is

better by a factor of 2 to 3 for the smaller t. The anomolous dips in

both curves are a curious aspect of this procedure which also shows up

in the exponential case of Fig. 24.

CONVERGENCE CRITERIA. The Gauss-Seidel algorithm is used as the

algebraic equation solver. An absolute convergence test is applied to

determine whether another iteration is required. That is, iterations

will continue until,

S(v+1) - x(v) (61)
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where, x ) = the ith unknown after the vth iteration
1

= absolute convergence criteria

The initial guess for x(v)is taken to be the last calculated values for

x. at the previous time step, (zero for the first guess). In all of the

results presented thus far, e = 0.001, This is a very stringent test

because the unknown function, f(z,v,t), is of the order of 1.0 x 105 for

these problems. Table IV shows the effect of relaxing the convergence

test on the same problem solution for three different values of E .

Since program execution time listed in the taLle includes entire

program execution, the percent reduction in running time will increase

slightly for longer running jobs (see below). From the data in Table

IV, it is obvious that a much less severe convergence test than 0.001 is

perfectly acceptable. It is also clear that this factor has an

important impact on computer costs. Since no special attempts were made

to optimize execution time for the finite element method, comparisons

with other techniques to determine the "fastest" method are not

possible.

Note that when a . # 2/3, the execution time increases by 55% com-

pared to the case when i.I = 2/3, for the same problem. At the same

time, the number of iterations remain about the same.

The large C was used on several different cases in order to deter-

mine the reduction of computational time which can be realized without

affecting the electric field results significantly (2nd or 3rd signifi-

cant digit). Table V shows these comparisons for different size jobs.
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TABLE IV

Convergence Parameters for a Linearly-Rising

Pulse Problem at t = 0.08 shake

EXECUTION f(z ,v ) E(0) TOTAL ELECTRONS ITERA- # NON-
E TIME(SEC) (shcm) MV/M IN MESH (cm-2 ) TIONS ZEROS,[A] IC 1i

0.001 137.3 2496 .9635 5.32643 x Cg9  30 728 2/3
100 113.3 2496 .9635 5.32643 x1O9  22 728 2/3
100000 91.1 2465 .9650 5.32570 x109 13 728 2/3
100000 141.4 2903 .9646 5.33002 xi9 11 1540 .60

zo = 7.1 cm, vo = 90 cm/sh

TABLE V

FEMNEP Execution Time and Memory Requirements

For Several Different Cases (a=2/3 )

PROBLEM k OF EXECUTION % REDUCTION MEMORY At # OF
TYPE C NODES TIME(SEC) IN EXECUTION FOR MATRIX TIME

TIME STORAGE (sh) STEPS

Steady- .001 128 8.376 ---- 8656 .001 125
State
Comparison

Fig. 11,

v=30. 100000 128 6.154 27 8656 .001 125

Steady- .001 492 111.183 ---- 35,054 .0005 250
State
Comparsion

Fig. 11,
Av=20 100000 492 76.424 31 35,054 .0005 250

SCALID .001 192 137.313 ---- 13,184 .0002 1204
Comparison

100000 192 91.108 34 13,184 .0002 1204
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Aeory requirements listed in the table are for [A], fAz], and the

Nz [Av] matrices, and their row and column pointer arrays. It does not

include other miscellaneous arrays or the remaining program storage. If

Iai#2/3 for these runs, the storage for matrix [A] would increase by a

factor of two, and execution time would suffer, as shown in Table IV.

When IcI=2/3 is used, there is a slight increase in the percent savings

in execution time, for C = 100000, as the number of time increments get

larger.

The FEMNEP comparison with the MADI code, Table II, took 2607

seconds (43.5 minutes) to execute with F =0.001. However, since 6000

time steps were done in this run, a factor of 34% savings can conserva-

tivly be estimated for E = 100000. This would reduce running time to

about 720 seconds (29 minutes). Memory requirement for the matrices in

this run was 37,655 decimal words, for ICC =2/3, and 528 nodes.

99



V. Summary and Conclusions

The overall goal of this study was to investigate the use of the

finite element method for the solution to the one-dimensional SCEMP

boundary layer problem. This feature of SGEMP plays a significant role

in the final amount of current which flows on the surface of the space

object. Because of this important effect, the boundary layer has been

treated using many different techniques. Numerical approaches are the

most prevalent methods currently being used.

SUMMARY. The one-dimensional boundary layer was described by the

Boltzmann transport equation for electrons using an analytic source

function. This equation is a time-dependent, nonlinear, first-order,

partial integro-differential equation in three independent variables: a

space variable, z; a velocity variable, v; and time, t. Since this is

an initial value problem, a time marching scheme can be used effective-

ly. The temporal behavior of the electrons is treated independent of

the spzce and velocity variables.

The finite element equations were developed for the (z,v) variables

using a regular rectangular mesh and linear approximations. The Method

of Weighted Residuals was used to derive the integral relationship. The

choice of the weight functions was dictated by the dominance of the

advective terms in the transport equation, and its nonlinear nature.

Weight functions which were identical to the approximating trial

functions did not work. Therefore, weights were picked which depend on
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the electrons' direction of travel through the (z,v) grid. This "up-

winding" technique creates a new parameter which determines the amuclnt

of bias to be applied to each element. For these equations, a minimum

number of non-zeroes occur in the coefficient matrix for the resulting

set of algebraic equations if a specified, constant value of 2/3 is used

for the magnitude of the upwinding parameter. This value also provides

a reasonable compromise between accuracy of pulse propagation and

dispersion of the pulse.

With the upwinding scheme, special care was required for the time

marching algorithm. Second order, centered, finite difference

techniques were not successful. However, a two-step Lax-Wendroff method

was found compatible with the fin _e element portion of the solution.

Boundary conditions on the transport equation in phase space were

applied in a manner similar to neutral particle transport techniques in

real space. With the upwinding set up in the direction of electron

motion through the grid, the distribution of electrons does not get nu-

merically reflected off any of the sides of the mesh.

The algebraic equations were solved twice every time step using an

iterative technique. A tightly packed scheme was chosen which only

stored non-zero members of the arrays. This method converged for every

choice of upwinding parameter, a, used, with the exception of ml = i.

Lhese methods and procedures were used to generate a new set of

results for the electric fields developed near a plane Aluminum surface

exposed to X-rays. These finite element solutions were then compared to

analytic estimates and particle simulation data. The latter comparisons

involved two different sets of data: scaled curves based upon a linearly

rising source, and a calculation for an exponentially rising and falling
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source. Although completely different approaches to the same problem

were used for both cases, very good quantitative comparisons were

obtained.

Finally, many computations were made to determine the behavior and

stablility of the finite element results as a function of the increments

used for all three independent variables, z, v, and t. Both physical

and numerical limitations were investigated.

CONCLUSIONS. The finite element equations have been developed for

application to the SGEMP boundary layer problem. SGEMP is a member of a

class of charged particle transport phenomena which are described by

time-dependent, nonlinear, partial integro-differential equations. The

results of this study indicate that:

(1) Linear trial functions can be used successfully with a weighted

residuals approach if the weights are dependent on the direction of

particle travel through the mesh.

(2) When linear weight and trial functions are used, a value of 2/3

for the upwinding parameter reduces the storage requirements for the co-

efficient matrix, [A], when iterative solutions are sought. It also

decreases the computational time needed for iterative methods.

(3) The FEM can be implemented for the transport equation and the

coupled equation for the electric field in the same calculational mesh

when linear trial and weight functions are chosen.

(4) Free surface boundary conditions can be use, in the computa-

tional mesh, even at the interface where electrons are returning to the

surface of the object.

(5) Courant stability conditions are sufficient to ensure that the

solutions to the equations do not grow exponentially. This is true for
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both the z and v variables. However, v cannot be made indiscriminately

small wlthout reducing z as well.

(6) The z increment must be chosen small enough to resolve the

plasma Debye length with several mesh steps.

The comparisons of the finite element calculations with other

methods show that this technique can be used to analyze the difficult

nonlinear SGEMP boundary layer with success. They also provide new

results which support particle simulation methods and theory.
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APPENDIX A

Derivation of the One-Dimensional Equations

In a fully three dimensional problem, the equations governing the

motion of the electron plasma are given by Eqns (1), (2), (3) and (4).

When a reduction to one spatial dimension and one velocity direction is

desired, the assumption is made that variations of the dependent

variables are allowed only in these directions. That is,

f(xv+t)= f(z,v z ,t)

a(x,v,t) = a(z,v ,t)
+4+ +

Z(xt) = E(z,t)

B(x,t) = B(z,t)

Figure 25 depicts the geometry for the one-dimensional problem. Under

these conditions, Eqn (1) immediately becomes:

af af af ,t=Sz ,t (A)
{(z,vz t) + vzZ-(z,vt) + a- v(Zv t) S(Z'v t) (A1)

Thus, only a (z,v ,t) plays a role, and it is now reduced to:
zv

a (ZV , t) - - aE (z,t) (A-2)
z mZ
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since a cannot be a function of v or v • Also, the two Maxwell's

Equations, Eqns (3c) and (3d) become:

-Evzy(,t) = t x(z,t) (A-3a)
a

zx(z,t) = - 2tY(zt) (A-3b)

3B (z,t) = 0 (A-3c)

And,

M(zBt) = voix(Z't) + 0oCoEX(z,t) (A-4a)

aB aE
-Bx(z,t) = 4oJy(Z,t) + 2oEv(z,t) (A-4b)

E oat

J (z't) = - 'oEZ(z,t) (A-4c)

All but one of these equations can be eliminated from further con-

sideration. For example, the existence of E (z,t) will create an accel-

eration in the x-direction from Eqn (2), unless,

Ex(z,t) v zB y(zt) - v yB z(Zt) (A-5)
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But, if this were the case, Eqn (A-5) can be twice differentiated with

respect to time, to give:

D2 E 1 32E

a-(2,t) - t2 0 (A-6)
z

where Eqns (A-3b) and (A-3c) have been used. However, when Eqn (A-4a)

is differentiated with respect to t, and Eqn (A-3b) is substituted in,

the result is,

32 E I 32 E
-72x(z,t) - ?tX(z,t) =0 (A-7)

since Li o = I/c2

Comparing Eqns (A-6) and (A-7), the only way both can hold true is

if vz c. Since this is not possible, the only conclusion that can be

reached is that E x(z,t)=0. In a similar manner, it is an easy task to

show that Ey (z,t)=O.

Once E and E have been identified as zero, Eqns (A-3) require

+
that 3(z,t) = 0, because B(z,0) = 0. The only remaining Maxwell's

Equation is Eqn (A-4c), Ampere's Law. This is one of the two fundamen-

tal equations used in this dissertation, the other being Vlasov's

Equation, Eqn (A-I) with the source specified by a boundary condition.
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APPENDIX B

Derivation of Distribution Function

Boundary Condition for an

Exponential Energy Dependence

The purpose of this appendix is to derive the expression for the

analytic source term, f (v), Eqn (17). This expression is valid if the
V

electron energy emission spectrum is assumed to be exponential, which is

a good approximation for blackbody photon sources. The derivation given

here follows along the reasoning of Carron and Longmire (Ref 4), and

uses the angle and direction definitions of Fig. 25.

For an exponential dependence, the electron energy distribution,

dF/dW, is related to the X-ray flux, , via:

i r #e 1 t)[ joule]
dF #fe JouE 1 -sec (B-i)

dw -sec-jouleJ wI rjoule]

where, Y - material electron yield

w, =exponentiation energy.

'Tote that,

dw = Y(t) - F = flux of electrons

0
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Since w total energy of the electron, the normal component of

energy, w , is,
a

w = !mv2 (B-2)
z 2 z

The transformation from (v , v , v ) coordinates to ( JvJ I , q )x y z

coordinates is:

dv dv dv z JvlsinO dO d4 dv = v2dIl dv (B-3)

where, v = IV

di2 = differential solid angle

= sin9 dO d•

Therefore,

dF d3 F m d2 F-dW ~ v v -H -- (B-4)" dv dvdv v 49dr
x y z

where the identity, dw = my dv, has been used.

.,ow, the v and v directions are integrated out of the velocityx Y

distribution, with the help of Eqn (B-4), and
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v= 2 V2  2 v2 + v2

r z x y

to get:

2r

dF f (f OF fd2 F
dv:I dydv dv v dVodVy = dO-- ddvr (B-6)
T, JJ x y z XyQd

since, dvxdvy = vr dvr d.

The assumption is now made that the electron emission spectrum can

be separated into energy and angle parts, with a cosO angular

dependence, and exponential energy history. That is,

d2 F = YO(t) cose e-w/w l = Yv'O(t) e- w /w
1 (B-7)

d2dw irw1  7rvw i

The I/n is a normalization factor which is required to give the correct

integration over the hemisphere,

27r

0d2 dF
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Equation (B-7) can be substituted into Eqn (B-6) to give:

HF r.2Yv__z(t f -w w
dF w-- Wv dv (B-8)

ZI

0

But,

w = r(v2 + V2)
2w z r

And, dw = y dv if v is held fixed. As v runs from 0 to m , w goesr z r

from mv2/2 to -. Thus,

dF mY vzr (t ) e -/w(

dv W_ dw (B-9)

z

Using the definition of the exponential integral,

E (x) dt

the differential flux i:

1]4



dF MYvz P(t) / v2
d-= wI  El -7Wl) (B-jO)

7vz 1 2w, B-0

But, the differential rate for emitting electrons at z=O is just:

dF
d-v - vzf(Ovz,t) (B-Il)

That is to say, the flux of electrons at the boundary is equal to the

integrated flow rate across the boundary.

max

F(t) = vzof(Ovzgt) dv,

0

Comparing Eqn (B-11) to Eqn (B-10),

f(O,vzt) . w kl' l (B-12)

Finally, note that

(t) oules] T(t) [sec-1  (B-13)
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When Eqns(B-12) and (B-13) are combined, with the separation of Eqn (46)

assumed, the result is:

f (v mYw 2wi (B-14)

This is the same as Eqn (17), when the z-subscript is dropped.
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APPENDIX C

Irregular Meshes and the Use of

Non-Rectangular Elements

Rectangular elements were used exculusively throughout this disser-

tation because of the many simplifications which take place in the

finite element equations for one-dimensional SGEMP. However, there are

some advantages to using shapes other than rectangles, particularly if

more than one spatial dimension is involved. Of course, if this were

the case, a two-dimensional problem would require five independent var-

iables, two space coordinates, two velocity coordinates, and time.

Then, there is a large combination of elements which could be used;

perhaps triangles for the spatial variables, to take advantage of their

ability to model odd-shaped surfaces accurately, and rectangles for the

velocity variables, to exploit the ease of integration over this type of

element (see bel No matter what combination is chosen, the fact

that rectangles are not exclusively used will make the analysis more

difficult.

In order to see some of the extra analysis which would be required,

this appendix will consider the use of triangles in the one-dimensional

problem. Figure 26 shows a triangular element in a local area-weighted

coordinated system. The primary advantage of triangles over rectangles

is that one can cover a region with nodes in any desired location by

using large, small, and elongated triangles. A mesh showing this type

of covering is given in Fig. 27. The very nature of the arbitrary lo-

cation of the nodes when using triangles is the cause for the more dif-
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ficult analysis.

The linear trial functions used to approximate the unknowns, E(z,t)

and f(z,v,t), for the element of Fig. 26 are:

T = (a i+ b z + c iv)/2L (C-1)ii bi + i Cl

A = area of triangle 123

1 xi Y1

I x 2 Y2 (C-2)

1 x 3 Y3

And,

a, = z i+vi+2 - zi+2vi+ I  (C-3a)

bi = vi+1  vi+2  (C-3b)

C = z i+2- zi+1 (C-3c)

where the subscripts, i, are cyclic; that is, i=1231231...

The area-weighted coordinates for the triangle, (TI, T2 , T3 ) are

obviously a dependent set, with T,+ T2+ T3 =1. The transformation back

to the (z,v) global coordinates is accomplished by:

z - Tizl + T2 z2 + T3 z3  (C-4a)

v = TiV i + T2 v2 + T3 v3  (C-4b)

In this local system, the linear trial functions, Ni, i=1,2,3 are

equal to the coordinates themselves. That is, Ni = Ti, i - 1,2,3.

These trial functions are excellent candidates to approximate f(z,v,t)

using Eqn (22). However, unlike the rectangular trial functions of Eqn
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(29), the trbvrigular functions cannot be written as a product of two

functions, each only dependent on one of the global coordinates, like

Eqns (32). This causes "coupling" of the z and v directions in the tri-

angle elements (or any other non-rectangular element). For example, in

Fig. 26, E(z ,t) is calculated by integrating the product of v times
0

f(z ,v,t) along the dotted line, which intersects several triangles.
0

The upper and lower limits of each of these triangles are, in general,

functions of z. Therefore, a large amount of computer coding would be

required to calculate this line integral on an element-by-element basis.

Search routines would be necessary to determine which triangles are

being crossed, and, the functional dependence of each upper and lower

limit must be evaluated. This probably would result in numerical inte-

grations for all element matrices, requiring more computational logic.

For rectangular elements, on the other hand, the upper and lower limits

of the element are never functions of z. Furthermore, the regular pat-

tern of the rectangular elements allows the FEM to be applied to Eqn (6)

without having to use the Method of Weighted Residuals.

This is related to the question of separate meshes for the Vlasov

Equation and Ampere's Law raised in Chapter III. Consider Ampere's Law,

with the trial functions, M j(z), J=1,...,Nz, and N i(z,v), i~l,...,N, for

f(z,v,t). The N can be taken as the same functions used in Vlasov's

Equation for this regular mesh scheme. The projection of the N 's oni

the one-dimensional z-space produces the same nodal placement as would

be picked for a solely one-dimensional problem. Thus, Eqn (6) can be

expressed as:

N
z N

aM j (z)Je i(zv) dv fi(t) (C-5)

J-1 i1iJ all
v
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But, since any piecewise linear polynomial will do for the finite

element approximation for E, the M j (z) can be taken as the

one-dimenional projection of the bilinear functions, N i(z,v) onto z.

Therefore, only the nodal values of E are needed. They can be evaluated

at the k-th node using the fact that MJ(zk) = SJk"

N

IvN(zv) dv f(t) C-6)k EoilJ ik

Therefore, in order to calculate the electric field at a node of z,.

only the integral on the right-hand-side needs to be evaluated, not Eqn

(27). However, if N i(z,v) did not have a z-node at zk, the integral on

the right-hand-side of Eqn (C-6) would be a function of z . Thus, sim-k

plification of this integral only takes place is for the rectangular

elements. Then, Simpson's rule can be applied directly to Eqn (C-6), as

is done in Chapter III.
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APPENDIX D

The Assembly Process

The purpose of this appendix is to fully describe the meaning of

Eqns (36) and (38) which symbolically indicate the relationship between

the local element matrix and the global matrix. The following concepts

have been taken from Oden and Reddy (Ref 34, Chapter 6), and applied to

the matrix assembly needed for the one-dimensional SGEMP equations.

Let {x i} , i=l,...,N, represent the set of N global nodal points,

iand, {x~e)}} , i=l,...,N(e), e=1,...,N , represent the set of N(e) local

nodal points for each element, e. Then, the transformation which takes

the local nodal points into the global nodes is:

N(e)

x= A(e)X(e) (D-I)Eijj=l

where,

1, if node j of element (e) coincides

A(e) = with node i of the global set;

i] 10, otherwise.

The [A(e)I is a Boolean rectangular (N x N (e)) matrix which maps the

numbering system of the local nodes in element, (e), into the global

numbering of the nodes. The set {[A(e)]}, e = l,...,N , is a collection
e

of all mappings, which puts the nodes of all the elements into their

proper location in the global model.
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Consider Fig. 28, which shows a set of three elements, one

rectangle and two triangles. The local and global numbering chosen for

the nodes are also shown. In this case, N = 6, Ne = 3, N
( 1)  3,

(2) (3)
N = 4, and N = 3. Thus, for element i,

x1- 10 0- (1),Xkl)
x2  0 0

'x3 000 (1) 0
X4 0 x00 (D-3)

x 5  
0000

The above 6 x 3 matrix is [A 1 )]. The other two Boolean matrices,

[A ( 2)  and [A (3)], can be written in a similar fashion. The set,

[A (1), [A (2)1, [A(3 ) ]  fully describes the process of transforming

from the local nodes to the global nodes.

Using these Boolean matrices, it is now possible to express in more

detail the meaning of Eqn (36):

(A)A (e (e) a(e)b(e) (e) (,)N (e) ddn(Aij (E) E ~ E= Aik JjZ k ,nN 9 ,)dd

(e)-l k=1 Z1 - -

e 4 4
E -  ( e ) ( e ) ( e )  

1'.' D4
-__Ai~ ak , i,j = 1,...,N (D-4)

(e)=l k=1 4=1

The sums overg and k run from 1 to 4 because N(e) = 4. The matrices
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A (e ) I are dimensioned N x 4, and there are Ne of them. The expression

for [A is similar:

N e 4 4 +1 +1

(z ij -- E.Aik Aji v c  )

(e)-1 k-l X-1 -1 - (e .N ( e )

Ne +1+1
' (e)(e)a b(e))k e) Ce)

= .J AA. A (ai Ce ,k i = I,...,N (D-5)
(e)=1 k=I £=

The method for transforming [Av] J is governed by a different rule,

Eqn (38). Like [A] and [Az], [Av]J can be written:

Ne ++
- A (e A) (e) a ( e ) J j= 1,J...N; (D) d

[(AvJi E m: i k j e it~e( zN k

(e)=1 k=l 1-

C(D-6)

But Eqn (D-6) can be further reduced by expressing jz) as a function

of only the local coordinates. In order to do this, a one-dimensional

z-mesh must be defined which is coincident with the z-portion of the

rectangular (z,v) grid. Then, the functions, L1 ( ) and L 2('$ ), Eqns

(31), can be used, and MA z) can be formally written:

N-i 2- C ) e

M[(z) ) IAJ Ln Z(,) (D-7)

Cez)- n-1
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The (e z) elements are the linear segments between two nodes at constant

v in the (z,v) mesh. The Boolean matrix, [A'(ez)], dimensioned 2x(N z-1),

must be constructed to project the two nodes for each z-segment

onto the global nodes of the rectangular mesh. For example, consider

the two rectangles in Fig. 29. Here, N = 2, N = 6, N = 2, so that:
g e

1 0001 0 0 l F1l
A01) 1 0 2 1 0001

A 0 0 , (2) = 00 , A' 0 1

000 0O00110

0 0 J 0 0 ]

Now, Eqn (D-6) may be written as,

N N -le z 4 4 2

[(A)] i (e (A Ez (e))[(--Ji m a1k ,1j E 1 A k Aj n (a )kX

(e)=l(e )=ik=l 9=1 n=
z

where,

+1 +1

(a(e) a (e ) ez)(E)W(e)(E N( (En) d~dn (D-8)vn kit jj n k ~dd D8
-1 -1

This equation is the precise definition of what is meant by Eqn (38).
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Fig. 29 Two Rectangular Elements
- With Global and Local Labels

128



APPENDIX E

Derivation of Element Matrices

Equations (40) show the end product of performing the integrations

in Eqns (37) and (39), which define the 4 x 4 element matrices, [a],

[az], [aV 1], and [av2]. Since all 16 members of each matrix has been

derived separately, it is not practical to include them all here. How-

ever, for purposes of illustration, one member of each of these matrices

will be derived to illustrate how the final expressions for them are ob-

tained.

All of the integrations over the element rectangle are reduced to

integrations over the linear functions, LI(x) and L2 (x), defined by Eqns

(31). The identities given in Table VI are useful in these derivations.

First, consider Eqn (47a). Using the definition given by Eqns

(33d) aud (32b),

+1 +1

= ab fJ Ll( ) + a 3F( )][L 2(n) - a.F(n)]L 2()Lj(n) d~dn

-1 -1

abf[L1 ()L 2(C) - 3a3L1 ( )L ()] dE' fLl(n)L2(T) + 3aL(n)L2(n)]dn

-1 -1 (E-i)

where the meaning of F(E) and F(n) have been used, Eqn (34). Table VI

gives the values for the integrals in Eqn (E-1), which now can be
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TABLE VI

Useful Integrals of Ll(x) and L 2(x)

+1 +1

fL(x) dx = 1 fL2(x) dx

-1 -1

1 f

(x) dx-- n(x) dx =

-1 --1

L(22
J1 1

fL(x)L (x) dx I L(x)L2(x) dx

-L1

I: /I

]((x)L(x) dx d

-1

i,j = 1,2
i j

expressed:

a2 ab 1 1 1 1 ab

a2 ab[ ( I -(2 - 3) (2 + 3ax4 (E-2)

Figure 3 shows that for i-4, J-2, -- I, E -+I, n -+I, and n --I.

Therefore, Eqn (40a) becomes,

ab2 2 a 34 aba 4  2 - +- ) -- 3+y)(2 - 3c 3 ) (E3)
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identical to Eqn (E-2).

Now, re-call the definition of [a ] given by Eqn (37b). In order to
z

calculate (a) , the following derivative is needed:
z 23

Thus,

+1 +1

(a) (bn + vc)[L2 () - a F(E)][L (n) + a2F(n)]L 2 n ) d~dn
z 23 211(J 1 2

-1 -1

[r2bL2(n) - b + v c)L ()L 2(n) - 3a 2L (n)L2(n))Jd,

-I

+1

f L2() + 3a1L1(E)L2 ( )] d , (E-4)

since n - 2L 2 (  ) - 1. Carrying out these integrations yields:

1 3 1 1

(a ) = (1 + al)[V - b)( --- ) + 2b( --a)]
z 23 c 6 2 3 2

b 3
-- t(I + a )[- ba - vc(1 - .a 2)] (E-5)

With 1-2, J-3, which implies that k-1, p-2, -+I, -+I, n --1, -i+1,
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Eqn (40b) gives,

(az23 2 + a)[(2 3a2)v -.53-2 b)] (E-6)

which is the same as Eqn (E-5).

Now, for (aV) 12

vi 12

Therefore,

+1 +1

(a ) a + a F(C)[L1 (n) + a F(ri)]L
vi ]L 2(C) ddn

+1 +1
"- 3aL22)L2( )] dJLI.nl) - 3a L 1(n)L 2 (n)] dn

(E-7)

The above equation yields upon integration:

(a 
(E-8)

vi 12 2 6 i"- -6 - 4 )(5 - 6(E-)
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Again, by definition, with i=1, j-2, p-4 , k-1, i-, --1- n

n .=-1, Eqn (40c) is,J

(av) _ a (i - 24)[ 5  - + 3 - 6( 1 -3))5- 6ct) (E-9)
V1 12  20 3 2 60

identical to Eqn (E-8).

Finally, consider the evaluation of (a v2) Since,

I-3(C, n) = -L2

then,

+I +I

(av2) - a 3F(&)][L 2(n) - ct2F(n)] ddnv2 33

-+ -I

a [L3(&) + 3aL 3 (&)Ll( .)] d (n) + 3a L1(n)L2 (n)] dn (E-IO)

-f -I

Integration gives:

(av2 ) ,, (+ i- 3 )(i + 2-0(5 + 3a3)(I + )  (E-I)
v233 N 103 2 23)1+1)

With, 1-3, J-3, k-3, p-2, %-+I, &+1, i+I, and &5" &1"- 1,
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Eqn (40d) yields,

(a ~ ~ () " 0(+al)(a 0 (2 1 5 +T(9 - 3)a3] = - -( + a2)(5 + 3a3) (E-12)

which is correct.

All of the other members of [a], [az], [av 1 , and [av2] are

obtained similarly, to give the expressions shown by Eqns (40).
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